Unraveling Subseasonal Drought Dynamics in India: Insights from NCMRWF Extended Range Prediction System

Kondapalli Niranjan Kumar aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Kondapalli Niranjan Kumar in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0313-8542
,
Ankur Gupta aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Ankur Gupta in
Current site
Google Scholar
PubMed
Close
,
T. S. Mohan aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by T. S. Mohan in
Current site
Google Scholar
PubMed
Close
,
Akhilesh Kumar Mishra aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Akhilesh Kumar Mishra in
Current site
Google Scholar
PubMed
Close
,
Raghavendra Ashrit aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Raghavendra Ashrit in
Current site
Google Scholar
PubMed
Close
,
Imranali M. Momin aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Imranali M. Momin in
Current site
Google Scholar
PubMed
Close
,
Debasis K. Mahapatra aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Debasis K. Mahapatra in
Current site
Google Scholar
PubMed
Close
,
D. Nagarjuna Rao aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by D. Nagarjuna Rao in
Current site
Google Scholar
PubMed
Close
,
Ashis K. Mitra aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by Ashis K. Mitra in
Current site
Google Scholar
PubMed
Close
,
V. S. Prasad aNational Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India

Search for other papers by V. S. Prasad in
Current site
Google Scholar
PubMed
Close
, and
M. Rajeevan bAtria University, Anandnagar, Bengaluru, India

Search for other papers by M. Rajeevan in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Drought, a prolonged natural event, profoundly impacts water resources and societies, particularly in agriculturally dependent nations like India. This study focuses on subseasonal droughts during the Indian summer monsoon season using standardized precipitation index (SPI). Analyzing hindcasts from the National Centre for Medium Range Weather Forecasting (NCMRWF) Extended Range Prediction (NERP) system spanning 1993–2015, we assess NERP’s strengths and limitations. NERP replicates climatic patterns well but overestimates rainfall in the Himalayan foothills and the Indo-Gangetic Plain while underestimating it in the core monsoon zone and western coastline. Nonetheless, the NERP system demonstrates its ability to predict subseasonal drought conditions across India. Our research explores the model’s dynamics, emphasizing tropical and extratropical influences. We evaluate the impact of monsoon intraseasonal oscillation (MSIO) and Madden–Julian oscillation (MJO) on drought onset and persistence, noting model performance and discrepancies. While the model consistently identifies MSIO locations, variations in phase propagation affect drought severity in India. Remarkably, NERP excels in predicting MJO phases during droughts. The study underscores the robust response in the near-equatorial Indian Ocean, a crucial factor in subseasonal drought development. Furthermore, we explored upper-level dynamic interactions, demonstrating NERP’s ability to capture subseasonal drought dynamics. For example, unusual westerly winds weaken the tropical easterly jet, and a cyclonic anomaly transports cold air at midlevels and upper levels. These interactions reduce thermal contrast, weakening monsoon flow and favoring drought conditions. Hence, the NERP system demonstrates its skill in assessing prevailing drought conditions and associated teleconnection patterns, enhancing our understanding of subseasonal droughts and their complex triggers.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kondapalli Niranjan Kumar, niranjan.kondapalli@gov.in

Abstract

Drought, a prolonged natural event, profoundly impacts water resources and societies, particularly in agriculturally dependent nations like India. This study focuses on subseasonal droughts during the Indian summer monsoon season using standardized precipitation index (SPI). Analyzing hindcasts from the National Centre for Medium Range Weather Forecasting (NCMRWF) Extended Range Prediction (NERP) system spanning 1993–2015, we assess NERP’s strengths and limitations. NERP replicates climatic patterns well but overestimates rainfall in the Himalayan foothills and the Indo-Gangetic Plain while underestimating it in the core monsoon zone and western coastline. Nonetheless, the NERP system demonstrates its ability to predict subseasonal drought conditions across India. Our research explores the model’s dynamics, emphasizing tropical and extratropical influences. We evaluate the impact of monsoon intraseasonal oscillation (MSIO) and Madden–Julian oscillation (MJO) on drought onset and persistence, noting model performance and discrepancies. While the model consistently identifies MSIO locations, variations in phase propagation affect drought severity in India. Remarkably, NERP excels in predicting MJO phases during droughts. The study underscores the robust response in the near-equatorial Indian Ocean, a crucial factor in subseasonal drought development. Furthermore, we explored upper-level dynamic interactions, demonstrating NERP’s ability to capture subseasonal drought dynamics. For example, unusual westerly winds weaken the tropical easterly jet, and a cyclonic anomaly transports cold air at midlevels and upper levels. These interactions reduce thermal contrast, weakening monsoon flow and favoring drought conditions. Hence, the NERP system demonstrates its skill in assessing prevailing drought conditions and associated teleconnection patterns, enhancing our understanding of subseasonal droughts and their complex triggers.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kondapalli Niranjan Kumar, niranjan.kondapalli@gov.in

Supplementary Materials

    • Supplemental Materials (PDF 1.9352 MB)
Save
  • Ahn, M.-S., D. Kim, K. R. Sperber, I.-S. Kang, E. Maloney, D. Waliser, and H. Hendon, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process‐oriented diagnosis. Climate Dyn., 49, 40234045, https://doi.org/10.1007/s00382-017-3558-4.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The JOINT UK Land Environment Simulator (JULES), model description–Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., 2006: The Indian drought of 2002—A sub-seasonal phenomenon? Quart. J. Roy. Meteor. Soc., 132, 25832602, https://doi.org/10.1256/qj.05.13.

    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and Coauthors, 2013: Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new global foam forecasts. Geosci. Model Dev. Discuss., 6, 62196278, https://doi.org/10.5194/gmdd-6-6219-2013.

    • Search Google Scholar
    • Export Citation
  • Borah, P. J., V. Venugopal, J. Sukhatme, P. Muddebihal, and B. N. Goswami, 2020: Indian monsoon derailed by a North Atlantic wavetrain. Science, 370, 13351338, https://doi.org/10.1126/science.aay6043.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776, https://doi.org/10.1002/qj.394.

    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 18651877, https://doi.org/10.1175/BAMS-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dhangar, N., S. Vyas, P. Guhathakurta, S. Mukim, N. Tidke, R. Balasubramanian, and N. Chattopadhyay, 2019: Drought monitoring over India using multi-scalar standardized precipitation evapotranspiration index. Mausam, 70, 833840, https://doi.org/10.54302/mausam.v70i4.277.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, D. C., and T. B. McKee, 1997: Characteristics of 20th century drought in the United States at multiple time scales. Atmospheric Science Paper 634, Colorado State University, 172 pp.

  • Francis, P. A., and S. Gadgil, 2010: Towards understanding the unusual Indian monsoon in 2009. J. Earth Syst. Sci., 119, 397415, https://doi.org/10.1007/s12040-010-0033-6.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Gera, A., and Coauthors, 2021: Skill of the extended range prediction (NERP) for Indian summer monsoon rainfall with NCMRWF global coupled modelling system. Quart. J. Roy. Meteor. Soc., 148, 480498, https://doi.org/10.1002/qj.4216.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 19–61.

  • Guhathakurta, P., P. Menon, P. M. Inkane, K. Usha, and S. T. Sable, 2017: Trends and variability of meteorological drought over the districts of India using standardized precipitation index. J. Earth Syst. Sci., 126, 120, https://doi.org/10.1007/s12040-017-0896-x.

    • Search Google Scholar
    • Export Citation
  • Gupta, A., A. K. Mitra, and E. N. Rajagopal, 2019a: Implementation of Unified Model based global Coupled Modelling System at NCMRWF. NCMRWF Tech. Rep. NMRF/TR/01/2019, 59 pp., https://www.ncmrwf.gov.in/reports.php.

  • Gupta, A., A. K. Mitra, and E. N. Rajagopal, 2019b: Implementation of sub-seasonal to seasonal forecast system with NCMRWF global coupled model. NCMRWF Tech. Rep. NMRF/TR/04/2019, 69 pp., https://www.ncmrwf.gov.in/reports.php.

  • Hersbach, H., and Coauthors, 2023: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 2 September 2023, https://doi.org/10.24381/cds.adbb2d47.

  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 4.1. Doc. LA-CC-06-012, 76 pp., http://csdms.colorado.edu/w/images/CICE_documentation_and_software_user’s_manual.pdf.

  • Joseph, S., A. K. Sahai, and B. N. Goswami, 2009: Eastward propagating MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 11391153, https://doi.org/10.1007/s00382-008-0412-8.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, https://doi.org/10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konda, G., and N. K. Vissa, 2021: Assessment of ocean-atmosphere interactions for the boreal summer intraseasonal oscillations in CMIP5 models over the Indian monsoon region. Asia-Pac. J. Atmos. Sci., 57, 717739, https://doi.org/10.1007/s13143-021-00228-3.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., H. S. Bedi, and M. Subramaniam, 1989: The summer monsoon of 1987. J. Climate, 2, 321340, https://doi.org/10.1175/1520-0442(1989)002<0321:TSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., A. Thomas, A. Simon, and V. Kumar, 2010: Desert air incursions, an overlooked aspect, for the dry spells of the Indian summer monsoon. J. Atmos. Sci., 67, 34233441, https://doi.org/10.1175/2010JAS3440.1.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., C. Zhang, and M. Sugi, 2000: Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 13541372, https://doi.org/10.1175/1520-0469(2000)057<1354:DOBITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., K. V. Ramesh, B. K. Samala, G. Meyers, J. M. Slingo, and M. J. Fennessy, 2006: Indian Ocean-monsoon coupled interactions and impending monsoon droughts. Geophys. Res. Lett., 33, L08711, https://doi.org/10.1029/2006GL025811.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., V. Kumar, M. Sugi, and J. Yoshimura, 2009: Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J. Atmos. Sci., 66, 553578, https://doi.org/10.1175/2008JAS2723.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO Ocean Engine. IPSL Note du Pole de Modelisation, 300 pp.

  • Mahto, S. S., and V. Mishra, 2020: Dominance of summer monsoon flash droughts in India. Environ. Res. Lett., 15, 104061, https://doi.org/10.1088/1748-9326/abaf1d.

    • Search Google Scholar
    • Export Citation
  • Markonis, Y., R. Kumar, M. Hanel, O. Rakovec, P. Máca, and A. AghaKouchak, 2021: The rise of compound warm-season droughts in Europe. Sci. Adv., 7, eabb9668, https://doi.org/10.1126/sciadv.abb9668.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration of time scales. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–186, https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales. Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 233–236, https://www.tib.eu/en/search/id/BLCP:CN008169111/Drought-Monitoring-with-Multiple-Time-Scales?cHash=fde84712dd804e39b292837db919d94d.

  • Megann, A., and Coauthors, 2014: GO5.0: The Joint NERC–Met Office NEMO Global Ocean Model for use in coupled and forced applications. Geosci. Model Dev., 7, 10691092, https://doi.org/10.5194/gmd-7-1069-2014.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., and K. A. Cherkauer, 2010: Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteor., 150, 10301045, https://doi.org/10.1016/j.agrformet.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., K. Thirumalai, S. Jain, and S. Aadhar, 2021: Unprecedented drought in South India and recent water scarcity. Environ. Res. Lett., 16, 054007, https://doi.org/10.1088/1748-9326/abf289.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., M. Mujumdar, and S. S. Mahto, 2022: Benchmark worst droughts during the summer monsoon in India. Philos. Trans. Roy. Soc., A380, 20210291, https://doi.org/10.1098/rsta.2021.0291.

    • Search Google Scholar
    • Export Citation
  • Mohan, T. S., H. Annamalai, L. Marx, B. Huang, and J. Kinter, 2018: Representation of ocean-atmosphere processes associated with extended monsoon episodes over South Asia in CFSv2. Front. Earth Sci., 6, 9, https://doi.org/10.3389/feart.2018.00009.

    • Search Google Scholar
    • Export Citation
  • Mujumdar, M., V. Kumar, and R. Krishnan, 2006: The Indian summer monsoon drought of 2002 and its linkage with tropical convective activity over Northwest Pacific. Climate Dyn., 28, 743758, https://doi.org/10.1007/s00382-006-0208-7.

    • Search Google Scholar
    • Export Citation
  • Neena, J. M., E. Suhas, and B. N. Goswami, 2011: Leading role of internal dynamics in the 2009 Indian summer monsoon drought. J. Geophys. Res., 116, D13103, https://doi.org/10.1029/2010JD015328.

    • Search Google Scholar
    • Export Citation
  • Niranjan Kumar, K., M. Rajeevan, D. S. Pai, A. K. Srivastava, and B. Preethi, 2013: On the observed variability of monsoon droughts over India. Wea. Climate Extremes, 1, 4250, https://doi.org/10.1016/j.wace.2013.07.006.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., P. L. Sridhar, P. Guhathakurta, and H. R. Hatwar, 2011: District-wide drought climatology of the southwest monsoon season over India based on Standardized Precipitation Index (SPI). Nat. Hazards, 59, 17971813, https://doi.org/10.1007/s11069-011-9867-8.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., M. Rajeevan, O. P. Sreejith, B. Mukhopadhyay, and N. S. Satbhai 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65, 118, https://doi.org/10.54302/mausam.v65i1.851.

    • Search Google Scholar
    • Export Citation
  • Patel, N. R., P. Chopra, and V. K. Dadhwal, 2007: Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteor. Appl., 14, 329336, https://doi.org/10.1002/met.33.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Search Google Scholar
    • Export Citation
  • Prasanna, V., and H. Annamalai, 2012: Moist dynamics of extended monsoon breaks over South Asia. J. Climate, 25, 38103831, https://doi.org/10.1175/JCLI-D-11-00459.1.

    • Search Google Scholar
    • Export Citation
  • Preethi, B., J. V. Revadekar, and A. A. Munot, 2011: Extremes in summer monsoon precipitation over India during 2001–2009 using CPC high-resolution data. Int. J. Remote Sens., 32, 717735, https://doi.org/10.1080/01431161.2010.517795.

    • Search Google Scholar
    • Export Citation
  • Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 22212230, https://doi.org/10.5194/gmd-8-2221-2015.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, https://doi.org/10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Raman, C. R. V., and Y. P. Rao, 1981: Blocking highs over Asia and monsoon droughts over India. Nature, 289, 271273, https://doi.org/10.1038/289271a0.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, C., 1962: Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the sub-tropical westerly jet streams. Tellus, 14A, 337349, https://doi.org/10.3402/tellusa.v14i3.9560.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, https://doi.org/10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Saith, N., and J. Slingo, 2006: The role of the Midden–Julian oscillation in the El Niño and Indian drought of 2002. Int. J. Climatol., 26, 13611378, https://doi.org/10.1002/joc.1317.

    • Search Google Scholar
    • Export Citation
  • Sarkar, J., 2011: Drought, its impacts and management: Scenario in India. Droughts in Asian Monsoon Region, R. Shaw and H. Nguyen, Eds., Emerald Group Publishing Limited, 67–86.

  • Sarma, J. S., 2004: Review and analysis of drought monitoring, declaration and management in India. International Water Management Institute Working Paper 84, 40 pp., https://www.preventionweb.net/files/1868_VL102135.pdf.

  • Shah, R. D., and V. Mishra, 2015: Development of an experimental near-real-time drought monitor for India. J. Hydrometeor., 16, 327345, https://doi.org/10.1175/JHM-D-14-0041.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2011: Drought: Past Problems and Future Scenarios. 1st ed. Routledge, 192 pp., https://doi.org/10.4324/9781849775250.

  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, https://doi.org/10.2307/210739.

    • Search Google Scholar
    • Export Citation
  • Umakanth, U., and Coauthors, 2019: Meridionally extending anomalous wave train over Asia during breaks in the Indian summer monsoon. Earth Syst. Environ., 3, 353366, https://doi.org/10.1007/s41748-019-00119-8.

    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 307–360.

  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all‐season real‐time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Search Google Scholar
    • Export Citation
  • WMO, 2006: Drought Monitoring and Early Warning: Concepts, Progress, and Future Challenges. WMO, 24 pp.

  • Yuan, W.-P., and G.-S. Zhou, 2004: Comparison between standardized precipitation index and z-index in China. Chin. J. Plant Ecol., 28, 523529, https://doi.org/10.17521/cjpe.2004.0071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1872 1872 371
Full Text Views 137 137 2
PDF Downloads 112 112 0