Role of Infiltration on Land–Atmosphere Feedbacks in Central Europe: Fully Coupled WRF-Hydro Simulations Evaluated with Cosmic-Ray Neutron Soil Moisture Measurements

Joël Arnault University of Augsburg, Institute of Geography, Augsburg, Germany
Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Garmisch-Partenkirchen, Germany

Search for other papers by Joël Arnault in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8859-5173
,
Benjamin Fersch Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Garmisch-Partenkirchen, Germany

Search for other papers by Benjamin Fersch in
Current site
Google Scholar
PubMed
Close
,
Martin Schrön Helmholtz Centre for Environmental Research, Department of Monitoring and Exploration Technologies, Leipzig, Germany

Search for other papers by Martin Schrön in
Current site
Google Scholar
PubMed
Close
,
Heye Reemt Bogena Forschungszentrum Jülich, Agrosphere Institute, Jülich, Germany

Search for other papers by Heye Reemt Bogena in
Current site
Google Scholar
PubMed
Close
,
Harrie-Jan Hendricks Franssen Forschungszentrum Jülich, Agrosphere Institute, Jülich, Germany

Search for other papers by Harrie-Jan Hendricks Franssen in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann University of Augsburg, Institute of Geography, Augsburg, Germany
Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Garmisch-Partenkirchen, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The skill of regional climate models partly relies on their ability to represent land–atmosphere feedbacks in a realistic manner, through coupling with a land surface model. However, these models often suffer from insufficient or erroneous information on soil hydraulic parameters. In this study, the fully coupled land–atmosphere model WRF-Hydro driven with ERA5 reanalysis is employed to reproduce the regional climate over central Europe with a horizontal resolution of 4 km for the period 2017–20. Simulated soil moisture is compared with data from cosmic-ray neutron sensors (CRNSs) at three terrestrial environmental observatories. Soil hydraulic parameters from continental and global digital soil datasets (SoilGrids and EU-SoilHydroGrids), together with Campbell and van Genuchten–Mualem retention curve equations, are used to assess the role of infiltration on modeled land–atmosphere feedbacks. The percolation parameter is calibrated to better capture observed discharge amounts in the observatories. WRF-Hydro with Campbell and SoilGrids gives the lowest mean annual temperature and mean annual precipitation differences compared to the E-OBS product from European Climate Assessment and Dataset, which is achieved by reducing soil moisture in the rootzone, increasing air temperature, and decreasing precipitation through a positive soil moisture–precipitation feedback process. WRF-Hydro with van Genuchten–Mualem and EU-SoilHydroGrids best reproduces CRNS soil moisture daily variations, despite enhanced positive biases that generate a larger proportion of convective precipitation favored over wet soils and spurious discharge peaks. This study demonstrates the importance of infiltration processes to realistically reproduce land–atmosphere feedbacks.

Significance Statement

The ability to correctly reproduce the feedbacks between land and atmosphere is crucial for a regional climate model. This study shows that the nature of these land–atmosphere feedbacks is partly related to the description of soil infiltration, which potentially helps to improve regional climate modeling results. An updated method to disentangle the proportion of convective precipitation being favored over wet, dry, and mixed soils is provided, which sheds new light on the soil moisture–precipitation feedback mechanism.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joël Arnault, joel.arnault@kit.edu

Abstract

The skill of regional climate models partly relies on their ability to represent land–atmosphere feedbacks in a realistic manner, through coupling with a land surface model. However, these models often suffer from insufficient or erroneous information on soil hydraulic parameters. In this study, the fully coupled land–atmosphere model WRF-Hydro driven with ERA5 reanalysis is employed to reproduce the regional climate over central Europe with a horizontal resolution of 4 km for the period 2017–20. Simulated soil moisture is compared with data from cosmic-ray neutron sensors (CRNSs) at three terrestrial environmental observatories. Soil hydraulic parameters from continental and global digital soil datasets (SoilGrids and EU-SoilHydroGrids), together with Campbell and van Genuchten–Mualem retention curve equations, are used to assess the role of infiltration on modeled land–atmosphere feedbacks. The percolation parameter is calibrated to better capture observed discharge amounts in the observatories. WRF-Hydro with Campbell and SoilGrids gives the lowest mean annual temperature and mean annual precipitation differences compared to the E-OBS product from European Climate Assessment and Dataset, which is achieved by reducing soil moisture in the rootzone, increasing air temperature, and decreasing precipitation through a positive soil moisture–precipitation feedback process. WRF-Hydro with van Genuchten–Mualem and EU-SoilHydroGrids best reproduces CRNS soil moisture daily variations, despite enhanced positive biases that generate a larger proportion of convective precipitation favored over wet soils and spurious discharge peaks. This study demonstrates the importance of infiltration processes to realistically reproduce land–atmosphere feedbacks.

Significance Statement

The ability to correctly reproduce the feedbacks between land and atmosphere is crucial for a regional climate model. This study shows that the nature of these land–atmosphere feedbacks is partly related to the description of soil infiltration, which potentially helps to improve regional climate modeling results. An updated method to disentangle the proportion of convective precipitation being favored over wet, dry, and mixed soils is provided, which sheds new light on the soil moisture–precipitation feedback mechanism.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joël Arnault, joel.arnault@kit.edu
Save
  • Andreasen, M., K. H. Jensen, D. Desilets, T. E. Franz, M. Zreda, H. R. Bogena, and M. C. Looms, 2017: Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J., 16 (8), 111, https://doi.org/10.2136/vzj2017.04.0086.

    • Search Google Scholar
    • Export Citation
  • Arnault, J., S. Wagner, T. Rummler, B. Fersch, J. Bliefernicht, S. Andresen, and H. Kunstmann, 2016: Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa. J. Hydrometeor., 17, 14891516, https://doi.org/10.1175/JHM-D-15-0089.1.

    • Search Google Scholar
    • Export Citation
  • Arnault, J., and Coauthors, 2018: Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: An ensemble analysis for central Europe. J. Hydrometeor., 19, 10071025, https://doi.org/10.1175/JHM-D-17-0042.1.

    • Search Google Scholar
    • Export Citation
  • Arnault, J., and Coauthors, 2021: Lateral terrestrial water flow contribution to summer precipitation at continental scale—A comparison between Europe and West Africa with WRF-Hydro-tag ensembles. Hydrol. Processes, 35, e14183, https://doi.org/10.1002/hyp.14183.

    • Search Google Scholar
    • Export Citation
  • Arnault, J., and Coauthors, 2023: Regional water cycle sensitivity to afforestation: Synthetic numerical experiments for tropical Africa. Front. Climate, 5, 1233536, https://doi.org/10.3389/fclim.2023.1233536.

    • Search Google Scholar
    • Export Citation
  • Baatz, R., H.-J. Hendricks Franssen, X. Han, T. Hoar, H. R. Bogena, and H. Vereecken, 2017: Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction. Hydrol. Earth Syst. Sci., 21, 25092530, https://doi.org/10.5194/hess-21-2509-2017.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., F. Chen, R. Rasmussen, Z. Zhang, and G. Miguez-Macho, 2021: The importance of scale-dependent groundwater processes in land-atmosphere interactions over the central United States. Geophys. Res. Lett., 48, e2020GL092171, https://doi.org/10.1029/2020GL092171.

    • Search Google Scholar
    • Export Citation
  • Baroni, G., and S. E. Oswald, 2015: A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing. J. Hydrol., 525, 264276, https://doi.org/10.1016/j.jhydrol.2015.03.053.

    • Search Google Scholar
    • Export Citation
  • Beven, K., 2006: A manifesto for the equifinality thesis. J. Hydrol., 320, 1836, https://doi.org/10.1016/j.jhydrol.2005.07.007.

  • Boeing, F., and Coauthors, 2022: High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrol. Earth Syst. Sci., 26, 51375161, https://doi.org/10.5194/hess-26-5137-2022.

    • Search Google Scholar
    • Export Citation
  • Bogena, H. R., and P. Ney, 2021: Dataset of “COSMOS-Europe: A European network of cosmic-ray neutron soil moisture sensors”. Forschungszentrum Jülich, accessed 26 October 2022, https://doi.org/10.34731/x9s3-kr48.

  • Bogena, H. R., J. A. Huisman, R. Baatz, H.-J. Hendriks Franssen, and H. Vereecken, 2013: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resour. Res., 49, 57785791, https://doi.org/10.1002/wrcr.20463.

    • Search Google Scholar
    • Export Citation
  • Bogena, H. R., and Coauthors, 2018: The TERENO-Rur hydrological observatory: A multiscale multi-compartment research platform for the advancement of hydrological science. Vadose Zone J., 17 (1), 122, https://doi.org/10.2136/vzj2018.03.0055.

    • Search Google Scholar
    • Export Citation
  • Bogena, H. R., and Coauthors, 2022: COSMOS-Europe: A European network of cosmic-ray neutron soil moisture sensors. Earth Syst. Sci. Data, 14, 11251151, https://doi.org/10.5194/essd-14-1125-2022.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao, and A. Cescatti, 2017: Local temperature response to land cover and management change driven by non-radiative processes. Nat. Climate Change, 7, 296302, https://doi.org/10.1038/nclimate3250.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, 311314, https://doi.org/10.1097/00010694-197406000-00001.

    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Li, F. Chen, A. Barr, M. Barlage, and B. Wan, 2016: The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest. Atmos. Chem. Phys., 16, 83758387, https://doi.org/10.5194/acp-16-8375-2016.

    • Search Google Scholar
    • Export Citation
  • Cornes, R. C., G. van der Schrier, E. J. M. van den Besselaar, and P. D. Jones, 2018: An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos., 123, 93919409, https://doi.org/10.1029/2017JD028200.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, https://doi.org/10.1029/WR020i006p00682.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2019: A global high‐resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. Earth Syst., 11, 29963023, https://doi.org/10.1029/2019MS001784.

    • Search Google Scholar
    • Export Citation
  • Dale, V. H., 1997: The relationship between land-use change and climate change. Ecol. Appl., 7, 753769, https://doi.org/10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and Coauthors, 2020: Biogeophysical impacts of forestation in Europe: First results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison. Earth Syst. Dyn., 11, 183200, https://doi.org/10.5194/esd-11-183-2020.

    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and E. H. Berbery, 2021: The role of soil texture in local land surface–atmosphere coupling and regional climate. J. Hydrometeor., 22, 313330, https://doi.org/10.1175/JHM-D-20-0047.1.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, https://doi.org/10.1175/JCLI-D-11-00338.1.

    • Search Google Scholar
    • Export Citation
  • Desilets, D., M. Zreda, and T. P. A. Ferré, 2010: Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res., 46, W11505, https://doi.org/10.1029/2009WR008726.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duveiller, G., J. Hooker, and A. Cescatti, 2018: The mark of vegetation change on Earth’s surface energy balance. Nat. Commun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8.

    • Search Google Scholar
    • Export Citation
  • Duzenli, E., I. Yucel, and M. T. Yilmaz, 2024: Evaluation of the fully coupled WRF and WRF-Hydro modelling system initiated with satellite-based soil moisture data. Hydrol. Sci. J., 69, 691708, https://doi.org/10.1080/02626667.2024.2331838.

    • Search Google Scholar
    • Export Citation
  • Fersch, B., A. Senatore, B. Adler, J. Arnault, M. Mauder, K. Schneider, I. Völksch, and H. Kunstmann, 2020: High-resolution fully coupled atmospheric–hydrological modeling: A cross-compartment regional water and energy cycle evaluation. Hydrol. Earth Syst. Sci., 24, 24572481, https://doi.org/10.5194/hess-24-2457-2020.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franz, T. E., M. Zreda, R. Rosolem, and T. P. A. Ferre, 2013: A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol. Earth Syst. Sci., 17, 453460, https://doi.org/10.5194/hess-17-453-2013.

    • Search Google Scholar
    • Export Citation
  • Furnari, L., L. Magnusson, G. Mendicino, and A. Senatore, 2022: Fully coupled high-resolution medium-range forecasts: Evaluation of the hydrometeorological impact in an ensemble framework. Hydrol. Processes, 36, e14503, https://doi.org/10.1002/hyp.14503.

    • Search Google Scholar
    • Export Citation
  • Gerken, T., B. L. Ruddell, R. Yu, P. C. Stoy, and D. T. Drewry, 2019: Robust observations of land-to-atmosphere feedbacks using the information flows of FLUXNET. npj climate Atmos. Sci., 2, 37, https://doi.org/10.1038/s41612-019-0094-4.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and Coauthors, 2020: The NCAR WRF-Hydro® modeling system technical description (version 5.2.0). NCAR Tech. Note, 108 pp., https://ral.ucar.edu/sites/default/files/public/projects/wrf-hydro/technical-description-user-guide/wrf-hydrov5.2technicaldescription.pdf.

  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Han, X., H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken, 2015: Correction of systematic model forcing bias of CLM using assimilation of cosmic-ray Neutrons and land surface temperature: A study in the Heihe Catchment, China. Hydrol. Earth Syst. Sci., 19, 615629, https://doi.org/10.5194/hess-19-615-2015.

    • Search Google Scholar
    • Export Citation
  • Heistermann, M., T. Francke, M. Schrön, and S. E. Oswald, 2024: Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content. Hydrol. Earth Syst. Sci., 28, 9891000, https://doi.org/10.5194/hess-28-989-2024.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hofstätter, M., A. Lexer, M. Homann, and G. Blöschl, 2018: Large-scale heavy precipitation over central Europe and the role of atmospheric cyclone track types. Int. J. Climatol., 38, e497e517, https://doi.org/10.1002/joc.5386.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class Microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hsu, H., M.-H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar, 2017: Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns. J. Geophys. Res. Atmos., 122, 63196328, https://doi.org/10.1002/2016JD026042.

    • Search Google Scholar
    • Export Citation
  • Iwema, J., R. Rosolem, M. Rahman, E. Blyth, and T. Wagener, 2017: Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration. Hydrol. Earth Syst. Sci., 21, 28432861, https://doi.org/10.5194/hess-21-2843-2017.

    • Search Google Scholar
    • Export Citation
  • Kiese, R., and Coauthors, 2018: The TERENO Pre-Alpine Observatory: Integrating meteorological, hydrological, and biogeochemical measurements and modeling. Vadose Zone J., 17, 117, https://doi.org/10.2136/vzj2018.03.0060.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., 2006: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362.

    • Search Google Scholar
    • Export Citation
  • Klein, C., and C. M. Taylor, 2020: Dry soils can intensify mesoscale convective systems. Proc. Natl. Acad. Sci. USA, 117, 21 13221 137, https://doi.org/10.1073/pnas.2007998117.

    • Search Google Scholar
    • Export Citation
  • Köhli, M., J. Weimar, M. Schrön, R. Baatz, and U. Schmidt, 2021: Soil moisture and air humidity dependence of the above-ground cosmic-ray neutron intensity. Front. Water, 2, 544847, https://doi.org/10.3389/frwa.2020.544847.

    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, and P. Hazenberg, 2020: Effects of lateral flow on the convective environment in a coupled hydrometeorological modeling system in a semiarid environment. J. Hydrometeor., 21, 615642, https://doi.org/10.1175/JHM-D-19-0100.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, https://doi.org/10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., S. I. Seneviratne, and E. L. Davin, 2017: Historical land-cover change impacts on climate: Comparative assessment of LUCID and CMIP5 multimodel experiments. J. Climate, 30, 14391459, https://doi.org/10.1175/JCLI-D-16-0213.1.

    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., E. L. Davin, L. Gudmundsson, J. Winckler, and S. I. Seneviratne, 2018: Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Climate Change, 8, 386390, https://doi.org/10.1038/s41558-018-0131-z.

    • Search Google Scholar
    • Export Citation
  • Leutwyler, D., A. Imamovic, and C. Schär, 2021: The continental-scale soil moisture–precipitation feedback in Europe with parameterized and explicit convection. J. Climate, 34, 53035320, https://doi.org/10.1175/JCLI-D-20-0415.1.

    • Search Google Scholar
    • Export Citation
  • Lhotka, O., and J. Kyselý, 2022: Precipitation–temperature relationships over Europe in CORDEX regional climate models. Int. J. Climatol., 42, 48684880, https://doi.org/10.1002/joc.7508.

    • Search Google Scholar
    • Export Citation
  • Li, F., H. R. Bogena, B. Bayat, W. Kurtz, and H.-J. Hendricks Franssen, 2024: Can a sparse network of cosmic ray neutron sensors improve soil moisture and evapotranspiration estimation at the larger catchment scale? Water Resour. Res., 60, e2023WR035056, https://doi.org/10.1029/2023WR035056.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Search Google Scholar
    • Export Citation
  • Malinowski, R., and Coauthors, 2020: Automated production of a land cover/use map of Europe based on Sentinel-2 imagery. Remote Sens., 12, 3523, https://doi.org/10.3390/rs12213523.

    • Search Google Scholar
    • Export Citation
  • Messager, M. L., B. Lehner, G. Grill, I. Nedeva, and O. Schmitt, 2016: Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mualem, Y., 1976: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513522, https://doi.org/10.1029/WR012i003p00513.

    • Search Google Scholar
    • Export Citation
  • Napoli, A., A. Crespi, F. Ragone, M. Maugeri, and C. Pasquero, 2019: Variability of orographic enhancement of precipitation in the Alpine region. Sci. Rep., 9, 13352, https://doi.org/10.1038/s41598-019-49974-5.

    • Search Google Scholar
    • Export Citation
  • Naz, B. S., W. Sharples, Y. Ma, K. Goergen, and S. Kollet, 2023: Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe. Geosci. Model Dev., 16, 16171639, https://doi.org/10.5194/gmd-16-1617-2023.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • O’Neill, M. M. F., D. T. Tijerina, L. E. Condon, and R. M. Maxwell, 2021: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: Evaluation of hyper-resolution water balance components across the contiguous United States. Geosci. Model Dev., 14, 72237254, https://doi.org/10.5194/gmd-14-7223-2021.

    • Search Google Scholar
    • Export Citation
  • Patil, A., B. Fersch, H.-J. Hendriks Franssen, and H. Kunstmann, 2021: Assimilation of cosmogenic neutron counts for improved soil moisture prediction in a distributed land surface model. Front. Water, 3, 729592, https://doi.org/10.3389/frwa.2021.729592.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Poltoradnev, M., J. Ingwersen, K. Imukova, P. Högy, H.-D. Wizemann, and T. Streck, 2018: How well does Noah-MP simulate the regional mean and spatial variability of topsoil water content in two agricultural landscapes in southwest Germany? J. Hydrometeor., 19, 555573, https://doi.org/10.1175/JHM-D-17-0169.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, https://doi.org/10.1007/s00382-015-2589-y.

    • Search Google Scholar
    • Export Citation
  • Rosolem, R., T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz, 2014: Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale. Hydrol. Earth Syst. Sci., 18, 43634379, https://doi.org/10.5194/hess-18-4363-2014.

    • Search Google Scholar
    • Export Citation
  • Rummler, T., J. Arnault, D. Gochis, and H. Kunstmann, 2019: Role of lateral terrestrial water flow on the regional water cycle in a complex terrain region: Investigation with a fully coupled model system. J. Geophys. Res. Atmos., 124, 507529, https://doi.org/10.1029/2018JD029004.

    • Search Google Scholar
    • Export Citation
  • Rummler, T., A. Wagner, J. Arnault, and H. Kunstmann, 2022: Lateral terrestrial water fluxes in the LSM of WRF-Hydro: Benefits of a 2D groundwater representation. Hydrol. Processes, 36, e14510, https://doi.org/10.1002/hyp.14510.

    • Search Google Scholar
    • Export Citation
  • Schrön, M., and Coauthors, 2017: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci., 21, 50095030, https://doi.org/10.5194/hess-21-5009-2017.

    • Search Google Scholar
    • Export Citation
  • Senatore, A., G. Mendicino, D. J. Gochis, W. Yu, D. N. Yates, and H. Kunstmann, 2015: Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst., 7, 16931715, https://doi.org/10.1002/2015MS000510.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirsch, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, J., R. Rosolem, M. Zreda, and T. Franz, 2013: The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation. Hydrol. Earth Syst. Sci., 17, 32053217, https://doi.org/10.5194/hess-17-3205-2013.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Sulis, M., J. Keune, P. Shrestha, C. Simmer, and S. J. Kollet, 2018: Quantifying the impact of subsurface-land surface physical processes on the predictive skill of subseasonal mesoscale atmospheric simulations. J. Geophys. Res. Atmos., 123, 91319151, https://doi.org/10.1029/2017JD028187.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., 2015: Detecting soil moisture impacts on convective initiation in Europe. Geophys. Res. Lett., 42, 46314638, https://doi.org/10.1002/2015GL064030.

    • Search Google Scholar
    • Export Citation
  • Tóth, B., M. Weynants, L. Pásztor, and T. Hengl, 2017: 3D soil hydraulic database of Europe at 250 m resolution. Hydrol. Processes, 31, 26622666, https://doi.org/10.1002/hyp.11203.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Amer. J., 44, 892898, https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    • Search Google Scholar
    • Export Citation
  • Wei, J., H. R. Knoche, and H. Kunstmann, 2015: Contribution of transpiration and evaporation to precipitation: An ET-Tagging study for the Poyang Lake region in Southeast China. J. Geophys. Res. Atmos., 120, 68456864, https://doi.org/10.1002/2014JD022975.

    • Search Google Scholar
    • Export Citation
  • Wollschläger, U., and Coauthors, 2017: The Bode hydrological observatory: A platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environ. Earth Sci., 76, 29, https://doi.org/10.1007/s12665-016-6327-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Arnault, S. Wagner, P. Laux, and H. Kunstmann, 2019: Impact of lateral terrestrial water flow on land-atmosphere interactions in the Heihe River Basin in China: Fully coupled modeling and precipitation recycling analysis. J. Geophys. Res. Atmos., 124, 84018423, https://doi.org/10.1029/2018JD030174.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Arnault, P. Laux, N. Ma, J. Wei, S. Shang, and H. Kunstmann, 2022: Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: Impact of boundary layer- and lateral flow parameterizations on land–atmosphere interactions. Climate Dyn., 59, 13551376, https://doi.org/10.1007/s00382-021-06044-9.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2023: Impact of alternative soil data sources on the uncertainties in simulated land-atmosphere interactions. Agric. For. Meteor., 339, 109565, https://doi.org/10.1016/j.agrformet.2023.109565.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2024: Sensitivity of joint atmospheric-terrestrial water balance simulations to soil representation: Convection-permitting coupled WRF-Hydro simulations for southern Africa. Agric. For. Meteor., 355, 110127, https://doi.org/10.1016/j.agrformet.2024.110127.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., C. Montzka, R. Baatz, H. Vereecken, and H.-J. Hendriks Franssen, 2021: The importance of subsurface processes in land surface modeling over a temperate region: An analysis with SMAP, cosmic ray neutron sensing and triple collocation analysis. Remote Sens., 13, 3068, https://doi.org/10.3390/rs13163068.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and Coauthors, 2019: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA, 116, 18 84818 853, https://doi.org/10.1073/pnas.1904955116.

    • Search Google Scholar
    • Export Citation
  • Zreda, M., D. Desilets, T. P. A. Ferré, and R. L. Scott, 2008: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett., 35, L21402, https://doi.org/10.1029/2008GL035655.

    • Search Google Scholar
    • Export Citation
  • Zreda, M., W. J. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem, 2012: COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci., 16, 40794099, https://doi.org/10.5194/hess-16-4079-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 668 668 51
Full Text Views 524 524 52
PDF Downloads 304 304 16