Abstract
During the past several years, the Global Energy and Water Cycle Experiment (GEWEX) continental-scale experiments (CSEs) have started to develop regional hydroclimatological datasets and water and energy budget studies (WEBS). To provide some global background for these regional experiments, the authors describe vertically integrated global and regional water and energy budgets from the National Centers for Environmental Prediction (NCEP)–U.S. Department of Energy (DOE) Reanalysis II (NCEPRII). It is shown that maintaining the NCEPRII close to observations requires some nudging to the short-range model forecast, and this nudging is an important component of analysis budgets. Still, to first order one can discern important hydroclimatological mechanisms in the reanalysis. For example, during summer, atmospheric water vapor, precipitation, evaporation, and surface and atmospheric radiative heating all increase, while the dry static energy convergence decreases almost everywhere over the land regions. One can further distinguish differences between hydrologic cycles in midlatitudes and monsoon regions. The monsoon hydrologic cycle shows increased moisture convergence, soil moisture, and runoff, but decreased sensible heating with increasing surface temperature. The midlatitude hydrologic cycle, on the other hand, shows decreased moisture convergence and surface water, and increased sensible heating.
Corresponding author address: Dr. John O. Roads, Climate Research Division, Scripps Institution of Oceanography, SIO/UCSD-0224, La Jolla, CA 92093-0224. Email: jroads@ucsd.edu