• Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and Gent P. R. , 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Cox, P. M., Huntingford C. , and Harding R. J. , 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 213 , 7994.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., Betts R. A. , Bunton C. B. , Essery R. L. H. , Rowntree P. R. , and Smith J. , 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS Climate Model. NASA Tech. Memo 83961, Goddard Space Flight Center, Greenbelt, MD, 57 pp.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2 , 14471462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1984: Modelling evapotranspiration for three dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr., No. 29, Amer. Geophys. Union, 58–72.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1994: Vegetation stress as a feedback mechanism in midlatitude drought. J. Climate, 7 , 14631483.

  • Dirmeyer, P. A., . 2001: An evaluation of the strength of land–atmosphere coupling. J. Hydrometeor., 2 , 329344.

  • Dirmeyer, P. A., and Zeng F. J. , 1997: A two-dimensional implementation of the Simple Biosphere (SiB) model. COLA Rep. 48, Center for Ocean–Land–Atmosphere Studies, Calverton, MD, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., . 1999: An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78, 25 pp. [Available from the Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Douville, H., Chauvin F. , and Broqua H. , 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14 , 23812403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33 , 725735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Gedney, N., Cox P. M. , Douville H. , Polcher J. , and Valdes P. J. , 2000: Characterizing GCM land-surface schemes to understand their responses to climate change. J. Climate, 13 , 30663079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and Rowntree P. R. , 1990: A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., Kershaw R. , and Inness P. M. , 1997: Parametrization of momentum transport by convection. II: Tests in single column and general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 11531183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the NCAR Community Climate Model (CCM2). J. Geophys. Res., 99 , 55515568.

  • Hahmann, A. N., and Dickinson R. E. , 2001: A fine-mesh land approach for general circulation models and its impact on regional climate. J. Climate, 14 , 16341646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, and Corsetti T. G. , 1984: Longwave radiation parameterization for the UCLA/GLAS GCM. NASA Tech. Memo 86072, Goddard Space Flight Center, Greenbelt, MD, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and Gornitz V. , 1984: Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Climatic Change, 6 , 231258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Boville B. A. , 1993: Local vesus non-local boundary layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., Hack J. J. , Bonan G. B. , Boville B. A. , Williamson D. L. , and Rasch P. J. , 1998: The National Center for Atmospheric Research Community Climate Model: CCM. J. Climate, 11 , 11311149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97 , 26972715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., . 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp.

  • Koster, R. D., and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and Hansen J. E. , 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31 , 118133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and Bua W. , 1998: Mechanisms of monsoon–Southern Oscillation coupling, insights from GCM experiments. Climate Dyn., 14 , 759779.

  • Louis, J., Tiedtke M. , and Geleyn J. , 1982: A short history of the PBL parameterization at ECMWF. ECMWF Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–80.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

  • Moorthi, S., and Suarez M. J. , 1992: Relaxed Arakawa–Schubert, a parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and Erickson III D. J. , 1989: Soil moisture and the persistence of North American drought. J. Climate, 2 , 13621380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, V. D., Gallani M. L. , Rowntree P. R. , and Stratton R. A. , 2000: The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Climate Dyn., 16 , 123146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., Folland C. , Maskell K. , and Ward M. N. , 1995: Variability of summer rainfall over tropical north Africa (1906–92): Observations and modeling. Quart. J. Roy. Meteor. Soc., 121 , 669704.

    • Search Google Scholar
    • Export Citation
  • Schar, C., Luthi D. , and Beyerle U. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., 1985: Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens., 6 , 13351372.

  • Sellers, P. J., Mintz Y. , Sud Y. C. , and Dalcher A. , 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors. 1996: The ISLSCP Initiative 1 global datasets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies. Bull. Amer. Meteor. Soc., 77 , 19872005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the earth's climate. Science, 215 , 14981501.

  • Suarez, M. J., and Takacs L. L. , 1995: Documentation of the ARIES/GEOS Dynamical Core: Version 2. NASA Tech. Memo. 104606, Vol. 5, 53 pp.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large scale flow in a general circulation model. Beitr. Phys. Atmos., 57 , 216239.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8 , 27162748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and Olson J. G. , 1994: Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon. Wea. Rev., 122 , 15941610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Sellers P. J. , Kinter J. L. , and Shukla J. , 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Zeng F. J. , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties—A case study using HAPEX–Mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and Mcfarlane N. A. , 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center General-Circulation Model. Atmos.–Ocean, 33 , 407446.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 350 126 12
PDF Downloads 224 118 11

Comparing the Degree of Land–Atmosphere Interaction in Four Atmospheric General Circulation Models

View More View Less
  • 1 Hydrological Sciences Branch, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
  • | 3 Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona
  • | 4 Wageningen University, Wageningen, Netherlands
  • | 5 Global Science and Technology, Inc., Lanham, Maryland
  • | 6 Hadley Centre for Climate Prediction and Research, Met Office, Berkshire, United Kingdom
  • | 7 Climate and Radiation Branch, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

The strength of the coupling between the land and the atmosphere, which controls, for example, the degree to which precipitation-induced soil moisture anomalies affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated coupling strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective intermodel comparison of land–atmosphere coupling strength, focusing on short (weekly down to subhourly) timescales. The experiment essentially consists of an ensemble of 1-month simulations in which each member simulation artificially maintains the same (model specific) time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicate the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that coupling strength does indeed vary significantly among the AGCMs.

Corresponding author address: Randal D. Koster, Hydrological Sciences Branch, NASA GSFC Code 974, Greenbelt, MD 20771. Email: randal.koster@gsfc.nasa.gov

Abstract

The strength of the coupling between the land and the atmosphere, which controls, for example, the degree to which precipitation-induced soil moisture anomalies affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated coupling strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective intermodel comparison of land–atmosphere coupling strength, focusing on short (weekly down to subhourly) timescales. The experiment essentially consists of an ensemble of 1-month simulations in which each member simulation artificially maintains the same (model specific) time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicate the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that coupling strength does indeed vary significantly among the AGCMs.

Corresponding author address: Randal D. Koster, Hydrological Sciences Branch, NASA GSFC Code 974, Greenbelt, MD 20771. Email: randal.koster@gsfc.nasa.gov

Save