Hydrologic Visibility of Weather Radar Systems Operating in Mountainous Regions: Case Study for the Ardèche Catchment (France)

Thierry Pellarin Laboratoire d'étude des Transferts en Hydrologie et Environnement, Grenoble, France

Search for other papers by Thierry Pellarin in
Current site
Google Scholar
PubMed
Close
,
Guy Delrieu Laboratoire d'étude des Transferts en Hydrologie et Environnement, Grenoble, France

Search for other papers by Guy Delrieu in
Current site
Google Scholar
PubMed
Close
,
Georges-Marie Saulnier Laboratoire d'étude des Transferts en Hydrologie et Environnement, Grenoble, France

Search for other papers by Georges-Marie Saulnier in
Current site
Google Scholar
PubMed
Close
,
Hervé Andrieu Laboratoire Central des Ponts et Chaussées, Bouguenais, France

Search for other papers by Hervé Andrieu in
Current site
Google Scholar
PubMed
Close
,
Bertrand Vignal Laboratoire d'étude des Transferts en Hydrologie et Environnement, Grenoble, France

Search for other papers by Bertrand Vignal in
Current site
Google Scholar
PubMed
Close
, and
Jean-Dominique Creutin Laboratoire d'étude des Transferts en Hydrologie et Environnement, Grenoble, France

Search for other papers by Jean-Dominique Creutin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simulation procedure has been developed for use in predetermining the expected quality of rain-rate estimates that a given weather radar system operating in a mountainous region may obtain over a given hydrologic catchment. This first application of what is referred to as the “hydrologic visibility” concept focuses on the quantification of the rain-rate error resulting from the effects of ground clutter, beam blockage, and the vertical profile of reflectivity (VPR). The assessment of the impact of the space–time structure of the radar error in terms of discharge at the catchment outlet is also investigated using a distributed hydrologic model. A case study is presented for the Ardèche catchment in France using the parameters of two S-band weather radars operated by Météo-France at Nîmes and Bollène. Radar rain-rate error generation and rainfall–runoff simulations are performed using VPR and areal rainfall time series representative of the Cévennes rain climatology. The major impact of ground clutter on both rainfall and runoff estimates is confirmed. The “hydrologic compositing procedure,” based on the selection of the elevation angle minimizing the rain-rate error at a given point, is shown to be preferable to the “pseudo-CAPPI” procedure based on radar-range considerations only. An almost perfect ground-clutter reduction (GCR) technique is simulated in order to assess the effects of beam blockage and VPR alone. These error sources lead to severe and slight rain underestimations for the Nîmes and Bollène radars, respectively, over the Ardèche catchment. The results, indicating an amplification of the errors on the discharge parameters (peak discharge, runoff volume) compared to the areal rainfall error, are of particular interest. They emphasize the need for refined corrections for ground clutter, beam blockage, and VPR effects, in addition to the optimization of the radar location and scanning strategy, if hydrologic applications are foreseen.

Corresponding author address: Dr. Guy Delrieu, LTHE, UMR 5564 (CNRS, UJF, INPG, IRD), BP 53, F-38041 Grenoble Cedex 9, France. Email: guy.delrieu@hmg.inpg.fr

Abstract

A simulation procedure has been developed for use in predetermining the expected quality of rain-rate estimates that a given weather radar system operating in a mountainous region may obtain over a given hydrologic catchment. This first application of what is referred to as the “hydrologic visibility” concept focuses on the quantification of the rain-rate error resulting from the effects of ground clutter, beam blockage, and the vertical profile of reflectivity (VPR). The assessment of the impact of the space–time structure of the radar error in terms of discharge at the catchment outlet is also investigated using a distributed hydrologic model. A case study is presented for the Ardèche catchment in France using the parameters of two S-band weather radars operated by Météo-France at Nîmes and Bollène. Radar rain-rate error generation and rainfall–runoff simulations are performed using VPR and areal rainfall time series representative of the Cévennes rain climatology. The major impact of ground clutter on both rainfall and runoff estimates is confirmed. The “hydrologic compositing procedure,” based on the selection of the elevation angle minimizing the rain-rate error at a given point, is shown to be preferable to the “pseudo-CAPPI” procedure based on radar-range considerations only. An almost perfect ground-clutter reduction (GCR) technique is simulated in order to assess the effects of beam blockage and VPR alone. These error sources lead to severe and slight rain underestimations for the Nîmes and Bollène radars, respectively, over the Ardèche catchment. The results, indicating an amplification of the errors on the discharge parameters (peak discharge, runoff volume) compared to the areal rainfall error, are of particular interest. They emphasize the need for refined corrections for ground clutter, beam blockage, and VPR effects, in addition to the optimization of the radar location and scanning strategy, if hydrologic applications are foreseen.

Corresponding author address: Dr. Guy Delrieu, LTHE, UMR 5564 (CNRS, UJF, INPG, IRD), BP 53, F-38041 Grenoble Cedex 9, France. Email: guy.delrieu@hmg.inpg.fr

Save
  • Andrieu, H., and Creutin J. D. , 1991: Effect of the vertical profile of reflectivity on the rain rate assessment at ground level. Preprints, 25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 832–835.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H., and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivities for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34 , 225239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrieu, H., Delrieu G. , and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivities for hydrological applications using an inverse method. Part II: Sensitivity analysis and case study. J. Appl. Meteor., 34 , 240259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrieu, H., Creutin J. D. , Delrieu G. , and Faure D. , 1997: Use of a weather radar for the hydrology of a mountainous area. Part 1: Radar measurement interpretation. J. Hydrol., 193 , 125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 1997: TOPMODEL: A critique. Hydrol. Processes, 11 , 10691086.

  • Beven, K. J., and Kirkby M. J. , 1979: A physically-based variable contribution area model of basin hydrology. Hydrol. Sci. Bull., 24 , 4369.

  • Beven, K. J., Lamb R. , Quinn P. , Romanowicz R. , and Freer J. , 1995: TOPMODEL: Models of Watersheds Hydrology,. V. P. Singh, Ed., Water Resources Publications, 627–668.

    • Search Google Scholar
    • Export Citation
  • Binder, P., and Schar C. , 1996: Mesoscale Alpine Programme Design Proposal. 2d ed. Swiss Meteorological Institute, 79 pp.

  • Bois, P., Obled C. , De Saintignon M. F. , and Mailloux H. , 1997: Atlas Expérimental des Risques de Pluie Intenses: Cévennes-Vivarais. LTHE-LAMA, Pôle Grenoblois d'étude et de Recherche pour la Prévention des Risques Naturels., 19 pp.

  • Cappus, P., 1960: Bassin expérimental d'Alrance: Étude des lois découlem application au calcul et à la prévision des débits. Houille Blanche, A , 493520.

    • Search Google Scholar
    • Export Citation
  • Chèze, J. L., and Helloco F. , 1999: The HYDRAM project of Météo-France: A quality-based approach for quantitative radar measurements. Preprints, 29th Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 321–324.

    • Search Google Scholar
    • Export Citation
  • Creutin, J. D., Andrieu H. , and Faure D. , 1997: Use of a weather radar for the hydrology of a mountainous area. Part 2: Validation of radar measurement. J. Hydrol., 193 , 2644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Datin, R., 1998: Outils opérationnels pour la prévention des crues rapides: Traitement des incertitudes et intégration des prévisions météorologiques, développements de TOPMODEL pour la prise en compte de la variabilité spatiale de la pluie (Flash flood modeling in an operational context: Uncertainty analysis, assimilation of QPF, development of TOPMODEL to account for spatial variability of rainfall). Ph.D. thesis, Institut National Polytechnique de Grenoble, Grenoble, France, 266 pp.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., Creutin J. D. , and Andrieu H. , 1995: Simulation of radar mountain returns using a digitized terrain model. J. Atmos. Oceanic Technol., 12 , 10381049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delrieu, G., Serrar S. , Guardo E. , and Creutin J. D. , 1999: Rain measurement in hilly terrain with X-band radar systems: Accuracy of path-integrated attenuation estimates derived from mountain returns. J. Atmos. Oceanic Technol., 16 , 405416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Duband, D., Obled C. , and Rodriguez Y. , 1993: Unit hydrograph revisited: An alternate iterative approach for unit hydrograph and effective precipitation identification. J. Hydrol., 150 , 115149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, T., and Black R. D. , 1970: Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res., 6 , 12961311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabella, M., and Perona G. , 1998: Simulation of the orographic influence on weather radar using a geometric–optics approach. J. Atmos. Oceanic Technol., 15 , 14851494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habets, F., and Saulnier G. M. , 2001: Subgrid runoff parameterization. Phys. Chem. Earth, 26B , 455459.

  • Joss, J., and Waldvogel A. , 1990: Precipitation measurement and hydrology. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Lee R. , 1995: The application of radar–gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 34 , 26122630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and Coauthors. 1998: Operational use of radar for precipitation measurements in Switzerland. Swiss National Science Foundation Final Scientific Rep. of the National Research Programme NRP 31, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., 2001: Visibilité hydrologique de radars météorologiques opérant en régions montagneuses: Application au bassin versant de l'Ardèche (Hydrologic visibility of weather radar systems operating in mountainous regions: Case study for the Ardèche catchment). Ph.D. thesis, Université Joseph Fourier, Grenoble, France, 192 pp.

    • Search Google Scholar
    • Export Citation
  • Saulnier, G. M., and Datin R. , 2002: Analytical solution to a bias in the TOPMODEL framework water balance. Hydrol. Processes, in press.

    • Search Google Scholar
    • Export Citation
  • Saulnier, G. M., Obled C. , and Beven K. J. , 1998: Including spatially variable effective soil depths in TOPMODEL. J. Hydrol., 202 , 158172.

    • Search Google Scholar
    • Export Citation
  • Serrar, S., Delrieu G. , Creutin J. D. , and Uijlenhoet R. , 2000: Mountain reference technique: Use of mountain returns to calibrate weather radars operating at attenuating wavelengths. J. Geophys. Res., 105 (D2) 22812290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skolnik, M. I., 1990: Radar Handbook. 2d ed. McGraw-Hill, 1037 pp.

  • Uijlenhoet, R., and Coauthors. 1999: HYDROMET integrated radar experiment (HIRE): Experimental setup and first results. Preprints, 29th Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 926–930.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., and Krajewski W. F. , 2001: Comprehensive large sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J. Hydrometeor., 2 , 490504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignal, B., Andrieu H. , and Creutin J. D. , 1999: Identification of vertical profile of reflectivity from volume scan radar data. J. Appl. Meteor., 38 , 12141228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignal, B., Galli G. , Joss J. , and Germann U. , 2000: Improvement obtained with different methods to correct volumetric radar data using vertical profile of reflectivity. J. Appl. Meteor., 39 , 17151726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, B. C., Nelson B. R. , Bradley A. A. , Smith J. A. , Peters-Lidard C. D. , Kruger A. , and Baeck M. R. , 1999: An evaluation of NEXRAD precipitation estimates in complex terrain. J. Geophys. Res., 104 (D16) 1969119704.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 668 188 13
PDF Downloads 299 91 12