• Avissar, R., 1992: Conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. J. Geophys. Res., 97 (D3) 27292742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., 1995: Scaling of the land–atmosphere interactions: An atmospheric modeling perspective. Hydrol. Processes, 9 , 679695.

  • Bell, K. R., , Blanchard B. J. , , Schmugge T. J. , , and Witczake M. W. , 1980: Analysis of surface moisture variations within large field sites. Water Resour. Res., 16 , 796810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolle, H. J., and Coauthors. 1993: EFEDA: European Field Experiment in a Desertification Threatened Area. Ann. Geophys., 11 , 173189.

  • Boone, A., , and Wetzel P. J. , 1996: Issues related to low resolution modeling of soil moisture: Experience with the PLACE model. Global Planet. Change, 13 , 161181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulet, G., , Kalma J. D. , , Braud I. , , and Vauclin M. , 1999: An assessment of effective parameterization of soil physical and land surface properties in regional-scale water balance studies. J. Hydrol., 217 , 225238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braud, I., 1998: Spatial variability of surface fluxes versus spatial variability of surface properties: Application to a fallow savannah of the Hapex-Sahel experiment using the SiSPAT SVAT model. Agric. For. Meteor., 89 , 1544.

    • Search Google Scholar
    • Export Citation
  • Braud, I., 2000: SiSPAT version 3.0, user's manual. LTHE, 83 pp. [Available from LTHE, BP 53, 38041 Grenoble Cedex 9, France, and online at http://www.lthe.hmg.inpg.fr.].

    • Search Google Scholar
    • Export Citation
  • Braud, I., , Angulo-Jaramillo R. , , Haverkamp R. , , Laurent J. P. , , Noilhan J. , , and Vandervaere J. P. , 1995a: Modélisation locale 1-D des transferts de masse et d'énergie d'une vigne à Tomelloso (EFEDA) incluant une croûte profonde de calcite. Proc. Atelier de Modélisation de l'Atmosphère, Toulouse, France, 173–182.

    • Search Google Scholar
    • Export Citation
  • Braud, I., , Dantas-Antonino A. C. , , and Vauclin M. , 1995b: A stochastic approach to studying the influence of the spatial variability of soil hydraulic properties on surface fluxes, temperature and humidity. J. Hydrol., 165 , 283310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braud, I., , Dantas-Antonino A. C. , , Vauclin M. , , Thony J. L. , , and Ruelle P. , 1995c: A Simple Soil–Plant–Atmosphere Transfer model (SiSPAT): Development and field verification. J. Hydrol., 166 , 231250.

    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., , and Corey A. T. , 1964: Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins, CO, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., , and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooge, J. C. I., , Rowntree P. R. , , Vauclin M. , , Todini E. , , Dümenil K. , , André J. C. , , and Stricker H. , 1994: Spatial Variability of Land Surface Processes (SLAPS II). Proc. Symp. on Global Change: Climate Change and Climate Change Impacts, Copenhagen, Denmark, EEC.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , and Eagleson P. S. , 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J. Climate, 2 , 816831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , and Wood E. F. , 1991: Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models. Land–Surface–Atmosphere Interactions for Climate Modelling: Observations, Model and Analysis, E. F. Wood, Ed., Kluwer Academic, 179–204.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , and Wood E. F. , 1992: Effects of spatial variability and scale on areally averaged evapotranspiration. Water Resour. Res., 31 , 699712.

    • Search Google Scholar
    • Export Citation
  • Federer, C. A., 1979: A soil–plant–atmosphere model for transpiration and availability of soil water. Water Resour. Res., 15 , 555562.

  • Gee, G. W., , and Bauder J. W. , 1986: Particle-size analysis. Methods of Soil Analysis: Physical and Mineralogical Methods, 2d ed., A. Klute, Ed., American Society of Agronomy, 383–411.

    • Search Google Scholar
    • Export Citation
  • Green, W. H., , and Ampt G. A. , 1911: Studies on soil physics. J. Agric. Sci., 4 , 124.

  • Haverkamp, R., , Ross P. J. , , Smetten K. R. J. , , and Parlange J. Y. , 1994: Three-dimensional analysis of infiltration from the disc infiltrometer. II. Physically based infiltration equation. Water Resour. Res., 30 , 29312935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haverkamp, R., and Coauthors. 1996: Hydrological and thermal behaviour of the vadose zone in the area of Barrax and Tomelloso (Spain): Experimental study, analysis and modelling. Final integrated Rep. EFEDA II Spain, Project UE No. EV5C-CT 92 00 90, 144–185.

    • Search Google Scholar
    • Export Citation
  • Haverkamp, R., , Bouraoui F. , , Angulo-Jaramillo R. , , Zammit C. , , and Delleur J. W. , 1998a: Soil properties and moisture movement in the unsaturated zone. The Handbook of Groundwater Engineering, J. W. Delleur, Ed., CRC Press, chap. V, 1–50.

    • Search Google Scholar
    • Export Citation
  • Haverkamp, R., , Parlange J-Y. , , Cuenca R. , , Ross P. J. , , and Steenhuis T. S. , 1998b: Scaling of the Richards equation and its application to watershed modeling. Scale Dependence and Scale Invariance in Hydrology, G. Sposito, Ed., Cambridge University Press, 190–223.

    • Search Google Scholar
    • Export Citation
  • Haverkamp, R., , Zammit C. , , Bouraoui F. , , Rajkai K. , , and Arrué J. L. , 1998c: Survey of soil field data and description of particle size, soil water retention and hydraulic conductivity functions. GRIZZLY: Grenoble Soil Catalogue of Soils, LTHE, 117 pp. [Available from LTHE, BP 53, 38041 Grenoble Cédex 9, France.].

    • Search Google Scholar
    • Export Citation
  • Hillel, D., 1980: Application of Soil Physics. Academic Press, 385 pp.

  • Kabat, P., , Hutjes R. W. A. , , and Feddes R. A. , 1997: The scaling characteristics of soil parameters. J. Hydrol., 190 , 363396.

  • Kim, C. P., , and Stricker J. N. M. , 1996: Influence of spatially variable soil hydraulic properties and rainfall intensity on the water budget. Water Resour. Res., 32 , 16991712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, C. P., , Stricker J. N. M. , , and Feddes R. A. , 1997: Impact of soil heterogeneity on the water budget of the unsaturated zone. Water Resour. Res., 53 , 991999.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and Suarez M. J. , 1992: A comparative analysis of two land-surface heterogeneity representations. J. Climate, 5 , 13791390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., 1992: A guide to the UK Meteorological Office Single Column Model. Hadley Centre for Climate Prediction and Research, Bracknell, United Kingdom.

    • Search Google Scholar
    • Export Citation
  • Lee, D. H., , and Abriola L. M. , 1999: Use of the Richards equation in land surface parameterization. J. Geophys. Res., 104 (D22) 2751927526.

  • Lewan, E., 1996: Evaporation, discharge and nitrogen leaching from a sandy soil in Sweden: Simulations and measurements at different scales in space and time. Department of Soil Science, Reports and Dissertations 27, University of Uppsala, Uppsala, Sweden, 125 pp.

    • Search Google Scholar
    • Export Citation
  • Linder, W., and Coauthors. 1995: Intercomparison of surface schemes using EFEDA flux data. Note du Groupe de Modélisation à Moyenne Echelle 34, Météo-France/CNRM, 105 pp.

    • Search Google Scholar
    • Export Citation
  • Mallants, D., , Mohanty B. P. , , Jacques D. , , and Feyen J. , 1996: Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Sci., 161 , 167181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, E. E., , and Miller R. D. , 1956: Physical theory for capillary flow phenomena. J. Appl. Phys., 27 , 324332.

  • Milly, P. C. D., 1982: Moisture and heat transport in hysteretic inhomogeneous porous media: A matric head-based formulation and a numerical model. Water Resour. Res., 18 , 489498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and Eagleson P. S. , 1987: Effects of spatial variability on annual average water balance. Water Resour. Res., 23 , 21352143.

  • Nielsen, D. R., , Biggar J. W. , , and Erh K. T. , 1973: Spatial variability of field-measured soil-water profiles. Hilgardia, 42 , 215260.

  • Noilhan, J., , and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Lacarrère P. , 1995: GCM gridscale evaporation from mesoscale modelling. J. Climate, 8 , 206223.

  • Peck, A. J., , Luxmoore R. J. , , and Stolzy J. L. , 1977: Effects of spatial variability of soil hydraulic properties in water budget modelling. Water Resour. Res., 13 , 348354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philip, J. R., , and De Vries D. A. , 1957: Moisture movement in porous materials under temperature gradients. Eos, Trans. Amer. Geophys. Union, 38 , 222232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., , and Finnigan J. J. , 1995: Scale issues in boundary-layer meteorology: Surface energy balances in heterogeneous terrain. Hydrol. Processes, 9 , 589612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. J. Phys., 1 , 318333.

  • Russo, D., , and Bresler E. , 1981: Soil hydraulic properties as stochastic processes. I. An analysis of field spatial variability. Soil Sci. Soc. Amer. J., 45 , 682687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santa Olalla Manas, J. F., 1994: EFEDA II Project: Vegetation, soil physics inventory and impact. Technical annual report (August 1 1993–July 31 1994), Albacete, Spain, 242 pp.

    • Search Google Scholar
    • Export Citation
  • Sene, K. J., 1996: Meteorological estimates for the water balance of a sparse vine crop growing in semiarid conditions. J. Hydrol., 179 , 259280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., , and Henderson-Sellers A. , 1996: Modelling of soil moisture: A project for intercomparison of land surface parameterisation schemes Phase 2(b). J. Geophys. Res., 101 (D3) 72277250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., , and Wallace J. S. , 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111 , 839855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soria, J. M., , Reggiani P. , , Angulo-Jaramillo R. , , and Haverkamp R. , 2002: Aggregation of soils in presence of spatial changes in texture for representation of large scale watershed hydrological fluxes. Proc. Int. Association for Hydraulic Research Conf., Berkerley, CA, IAHR, 573–578.

    • Search Google Scholar
    • Export Citation
  • Taconet, O., , Bernard R. , , and Vidal-Madjar D. , 1986: Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. J. Climate Appl. Meteor., 25 , 284307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Topp, G. C., , Davis J. L. , , and Annan A. P. , 1980: Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res., 16 , 574582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandervaere, J. P., 1995: Caractérisation hydrodynamique du sol in situ par infiltrométrie à disques. Analyse critique des régimes pseudo-permanents. Méthodes transitoires et cas des sols encroûtés. Ph.D. thesis, Université Joseph Fourier, Grenoble I, Grenoble, France, 329 pp.

    • Search Google Scholar
    • Export Citation
  • Vauclin, M., , Elrick D. E. , , Thony J. L. , , Vachaud G. , , Revol P. , , and Ruelle P. , 1994: Hydraulic conductivity measurements of the spatial variability of a loamy soil. Soil Technol., 7 , 181195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zammit, C., 1999: Analyse et évaluation des paramètres hydrodynamiques des sols: Prédiction par un modèle analytique à base physique à partir de données texturales. Ph.D. thesis, Université Joseph Fourier, Grenoble I, Grenoble, France, 200 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 172 6
PDF Downloads 45 45 2

Spatial Variability of Soil Surface Properties and Consequences for the Annual and Monthly Water Balance of a Semiarid Environment (EFEDA Experiment)

View More View Less
  • 1 LTHE, Grenoble, and CEMAGREF, UR Hydrologie–Hydraulique, Lyon, France
  • | 2 LTHE (CNRS UMR 5564, INPG, UJF, ORSTOM), Grenoble, France
  • | 3 Consejo Superior de Investigaciones Científicas, Estación Experimental de Aula Dei, Zaragoza, Spain
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

During the second phase of the European International Project on Climatic and Hydrological Interactions between Vegetation, Atmosphere, and Land Surface (ECHIDA) Field Experiment in a Desertification Threatened Area (EFEDA) the spatial variability of the soil water retention and hydraulic conductivity characteristics of layers at 2–12- and 17–27-cm depth was characterized. A simplified method, based on particle size distribution and simple infiltration tests, was used. It provided these characteristics at the nodes of a 1-km grid over 10 × 10 km2 around the town of Tomelloso (Castilla–La Mancha, Spain).

A total number of 78 sample points were used to address the problem of soil surface properties variability and its consequences on the monthly and annual water balance. The Simple Soil Plant Atmosphere Transfer model (SiSPAT) 1D Soil–Vegetation–Atmosphere Transfer (SVAT) model was run with a 1-yr climatic forcing for the 78 soil profiles until equilibrium was reached. As no runoff was generated, the spatial variability of the water budget components only concerned soil evaporation, transpiration, and deep drainage. It was found that (i) the choice of the type of boundary condition at the bottom of the soil profile was greatly influencing the final variability, (ii) the variability of transpiration was the largest in situations of water stress for the vegetation, and (iii) soil evaporation was the most sensitive component when plants were well supplied with water.

Various aggregation methods of soil surface parameters (use of the arithmetic mean, median of the parameters, or parameters associated to the average soil texture of the Clapp and Hornberger classification) were assessed. The use of median parameters in a single 1D simulation was found to provide the best agreement with the average of the 78 simulations performed for each grid cell using locally measured soil properties. The use of average soil texture parameters led to a significant bias, especially in the case of water stress.

Corresponding author address: Isabelle Braud, CEMAGREF, UR Hydrologie-Hydraulique, CP 220, 3bis Quai Chauveau, 69336 Lyon Cédex 9, France. Email: braud@lyon.cemagref.fr

Abstract

During the second phase of the European International Project on Climatic and Hydrological Interactions between Vegetation, Atmosphere, and Land Surface (ECHIDA) Field Experiment in a Desertification Threatened Area (EFEDA) the spatial variability of the soil water retention and hydraulic conductivity characteristics of layers at 2–12- and 17–27-cm depth was characterized. A simplified method, based on particle size distribution and simple infiltration tests, was used. It provided these characteristics at the nodes of a 1-km grid over 10 × 10 km2 around the town of Tomelloso (Castilla–La Mancha, Spain).

A total number of 78 sample points were used to address the problem of soil surface properties variability and its consequences on the monthly and annual water balance. The Simple Soil Plant Atmosphere Transfer model (SiSPAT) 1D Soil–Vegetation–Atmosphere Transfer (SVAT) model was run with a 1-yr climatic forcing for the 78 soil profiles until equilibrium was reached. As no runoff was generated, the spatial variability of the water budget components only concerned soil evaporation, transpiration, and deep drainage. It was found that (i) the choice of the type of boundary condition at the bottom of the soil profile was greatly influencing the final variability, (ii) the variability of transpiration was the largest in situations of water stress for the vegetation, and (iii) soil evaporation was the most sensitive component when plants were well supplied with water.

Various aggregation methods of soil surface parameters (use of the arithmetic mean, median of the parameters, or parameters associated to the average soil texture of the Clapp and Hornberger classification) were assessed. The use of median parameters in a single 1D simulation was found to provide the best agreement with the average of the 78 simulations performed for each grid cell using locally measured soil properties. The use of average soil texture parameters led to a significant bias, especially in the case of water stress.

Corresponding author address: Isabelle Braud, CEMAGREF, UR Hydrologie-Hydraulique, CP 220, 3bis Quai Chauveau, 69336 Lyon Cédex 9, France. Email: braud@lyon.cemagref.fr

Save