Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part I: Warm Season Results

Stéphane Bélair Meteorological Research Branch, Meteorological Service of Canada, Dorval, Quebec, Canada

Search for other papers by Stéphane Bélair in
Current site
Google Scholar
PubMed
Close
,
Louis-Philippe Crevier Canadian Meteorological Centre, Meteorological Service of Canada, Dorval, Quebec, Canada

Search for other papers by Louis-Philippe Crevier in
Current site
Google Scholar
PubMed
Close
,
Jocelyn Mailhot Meteorological Research Branch, Meteorological Service of Canada, Dorval, Quebec, Canada

Search for other papers by Jocelyn Mailhot in
Current site
Google Scholar
PubMed
Close
,
Bernard Bilodeau Meteorological Research Branch, Meteorological Service of Canada, Dorval, Quebec, Canada

Search for other papers by Bernard Bilodeau in
Current site
Google Scholar
PubMed
Close
, and
Yves Delage Meteorological Research Branch, Meteorological Service of Canada, Dorval, Quebec, Canada

Search for other papers by Yves Delage in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The summertime improvement resulting from the operational implementation of a new surface modeling and assimilation strategy into the Canadian regional weather forecasting system is described in this study. The surface processes over land are represented in this system using the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme. Surface variables, including soil moisture, are initialized using a sequential assimilation technique in which model errors of low-level air temperature and relative humidity are used to determine analysis increments of surface variables.

It was found that the magnitude and nature of the analysis increments applied to the surface variables depended on the surface and meteorological conditions observed in each region. In regions characterized by weak meteorological activity (i.e., no clouds or precipitation), model errors of low-level air characteristics are more likely to be related to an incorrect representation of surface processes due to either erroneous initial conditions or inaccurate parameterizations in the land surface scheme. In other regions characterized by more frequent and more intense precipitation events, surface corrections are mainly associated with inaccurate atmospheric forcing.

Objective evaluation against observations from radiosondes and surface stations showed that the amplitude of the diurnal cycle of near-surface air temperature and humidity is larger with the new surface system, in better agreement with observations. This type of improvement was found to extend higher up in the boundary layer (up to 700 hPa) where cold and humid biases were significantly reduced by introducing the new surface system. The model precipitation was also found to be significantly influenced by the new representation of surface fluxes. The problematic increase of a positive bias in precipitation with integration time was found to be significantly reduced with the new system, due to the warmer and drier boundary layer.

Corresponding author address: Dr. Stéphane Bélair, Recherche en Prévision Numérique, 2121 Trans-Canada Highway, Room 500, Dorval, QC H9P 1J3, Canada. Email: stephane.belair@ec.gc.ca

Abstract

The summertime improvement resulting from the operational implementation of a new surface modeling and assimilation strategy into the Canadian regional weather forecasting system is described in this study. The surface processes over land are represented in this system using the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme. Surface variables, including soil moisture, are initialized using a sequential assimilation technique in which model errors of low-level air temperature and relative humidity are used to determine analysis increments of surface variables.

It was found that the magnitude and nature of the analysis increments applied to the surface variables depended on the surface and meteorological conditions observed in each region. In regions characterized by weak meteorological activity (i.e., no clouds or precipitation), model errors of low-level air characteristics are more likely to be related to an incorrect representation of surface processes due to either erroneous initial conditions or inaccurate parameterizations in the land surface scheme. In other regions characterized by more frequent and more intense precipitation events, surface corrections are mainly associated with inaccurate atmospheric forcing.

Objective evaluation against observations from radiosondes and surface stations showed that the amplitude of the diurnal cycle of near-surface air temperature and humidity is larger with the new surface system, in better agreement with observations. This type of improvement was found to extend higher up in the boundary layer (up to 700 hPa) where cold and humid biases were significantly reduced by introducing the new surface system. The model precipitation was also found to be significantly influenced by the new representation of surface fluxes. The problematic increase of a positive bias in precipitation with integration time was found to be significantly reduced with the new system, due to the warmer and drier boundary layer.

Corresponding author address: Dr. Stéphane Bélair, Recherche en Prévision Numérique, 2121 Trans-Canada Highway, Room 500, Dorval, QC H9P 1J3, Canada. Email: stephane.belair@ec.gc.ca

Save
  • Bélair, S., and Mailhot J. , 2001: Impact of horizontal resolution on the numerical simulation of a midlatitude squall line: Role of implicit and explicit condensation. Mon. Wea. Rev., 129 , 23622376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., Méthot A. , Mailhot J. , Bilodeau B. , Patoine A. , Pellerin G. , and Côté J. , 2000: Operational implementation of the Fritsch–Chappell convective scheme in the 24-km Canadian regional model. Wea. Forecasting, 15 , 257274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L-P. , 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor.,4 , 371386.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, R., Côté J. , and Mailhot J. , 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117 , 17261750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55 , 10911108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhumralkar, C. M., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor., 14 , 67100.

    • Search Google Scholar
    • Export Citation
  • Boone, A., Calvet J-C. , and Noilhan J. , 1999: Inclusion of a third soil layer in a land surface scheme using the force–restore method. J. Appl. Meteor., 38 , 16111630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., Masson V. , Meyers T. , and Noilhan J. , 2000: The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme. J. Appl. Meteor., 39 , 15441569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., Mahfouf J-F. , and Noilhan J. , 1993a: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part I: Sensitivity and calibration studies. J. Appl. Meteor., 32 , 13351351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., Mahfouf J-F. , and Noilhan J. , 1993b: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part II: Implementation in a mesoscale model. J. Appl. Meteor., 32 , 13521364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38 , 726740.

  • Braud, I., Noilhan J. , Bessemoulin P. , Mascart P. , Haverkamp R. , and Vauclin M. , 1993: Bareground surface heat and water exchanges under dry conditions. Bound.-Layer Meteor., 66 , 173200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, U., Rhodin A. , and Eppel D. P. , 1998: A case study on variational soil humidity analysis from atmospheric observations. J. Hydrol., 212–213 , 95108.

    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., and Coauthors. 1999: MUREX: A land-surface field experiment to study the annual cycle of the energy and water budgets. Ann. Geophys., 17 , 838854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, J-T., and Wetzel P. J. , 1991: Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment: A numerical case study. Mon. Wea. Rev., 119 , 13681390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., Quirks W. J. , Chow S. H. , and Kornfield J. , 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors. 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101 , 72517268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors. 1997: Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes. J. Climate, 10 , 11941215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouinard, C., Mailhot J. , Mitchell H. L. , Staniforth A. , and Hogue R. , 1994: The Canadian regional data assimilation system: Operational and research applications. Mon. Wea. Rev., 122 , 13061325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and Arritt R. W. , 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34 , 20292045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., Roch M. , Staniforth A. , and Fillion L. , 1993: A variable-resolution semi-Lagrangian finite-element global model of the shallow-water equations. Mon. Wea. Rev., 121 , 231243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., Desmarais J. G. , Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998a: The operational CMC–MRB global environmental multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126 , 13971418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998b: The operational CMC–MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 13731395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., Thépaut J. N. , and Hollingsworth A. , 1994: A strategy for operational implementation of 4Dvar using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82 , 2348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delage, Y., and Girard C. , 1992: Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound.-Layer Meteor., 58 , 1931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , Kennedy P. J. , and Wilson M. F. , 1986: Biosphere–atmosphere transfer scheme (BATS) for the NCAR community model. NCAR Tech. Note NCAR/TN-275+STR, 69 pp.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Viterbo P. , Mahfouf J-F. , and Beljaars A. C. M. , 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128 , 17331756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., and Mahrt L. , 1994: Daytime evolution of relative humidity at the boundary layer top. Mon. Wea. Rev., 122 , 27092721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism. 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Entekhabi, D., Nakamura H. , and Njoku E. G. , 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32 , 438448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and McCorcle M. D. , 1991: The effect of heterogeneous soil moisture on a summer baroclinic circulation in the central United States. Mon. Wea. Rev., 119 , 21402167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and Bonnel B. , 1980: Computations of solar heating of the earth's atmosphere: A new parameterization. Contrib. Atmos. Phys., 53 , 3562.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1983: The cumulus parameterization problem. Mon. Wea. Rev., 111 , 18591871.

  • Fritsch, J. M., and Chappell C. F. , 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37 , 17221733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus W. A. Jr., , and Segal M. , 2000: Sensitivity of forecast rainfall in a Texas convective system to soil moisture and convective parameterization. Wea. Forecasting, 15 , 509525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garand, L., 1983: Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J. Atmos. Sci., 40 , 230244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giard, D., and Bazile E. , 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128 , 9971015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., 2000: A numerical simulation of dryline sensitivity to soil moisture. Mon. Wea. Rev., 128 , 28162834.

  • Habets, F., and Coauthors. 1999: The ISBA surface scheme in a macroscale hydrological model applied to the Hapex–Mobilhy area. Part II: Simulation of streamflows and annual water budget. J. Hydrol., 217 , 97118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, R., 2001: Assimilation of screen-level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77 , 145154.

  • Hu, Y., Gao X. , Shuttleworth W. J. , Gupta H. , Mahfouf J-F. , and Viterbo P. , 1999: Soil-moisture nudging experiments with a single-column version of the ECMWF model. Quart. J. Roy. Meteor. Soc., 125 , 18791902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J. H., van den Dool H. M. , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9 , 13501362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquemin, B., and Noilhan J. , 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX–MOBILHY data set. Bound.-Layer Meteor., 52 , 93134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102 , 509522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., Aksakal A. , and McQueen J. T. , 1997: The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold-frontal squall line. Mon. Wea. Rev., 125 , 384409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., Carlson T. N. , and Warner T. T. , 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea., Rev., 115 , 26602673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., Gauthier P. , St.-James J. , and Morneau J. , 1999: Implementation of a 3D variational data assimilation system at the Canadian Meteorological Center. Part II: The regional analysis. Atmos.–Ocean, 37 , 281307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., 1990: A numerical simulation of the surface water budget during HAPEX–MOBILHY. Bound.-Layer Meteor., 53 , 201222.

  • Mahfouf, J-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30 , 15341547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., and Noilhan J. , 1996: Inclusion of gravitational drainage in a land surface scheme based on the force–restore method. J. Appl. Meteor., 35 , 987992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailhot, J., Sarrazin R. , Bilodeau B. , Brunet N. , and Pellerin G. , 1997: Development of the 35-km version of the regional finite-element model. Atmos.–Ocean, 35 , 128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors. 1998: Scientific description of RPN physics library. Version 3.6, Recherche en Prévision Numérique, 188 pp. [Available from RPN, 2121 Trans-Canada, Dorval, QC, H9P 1J3, Canada; also available online at http://www.cmc.ec.gc.ca/rpn/physic98.pdf.].

    • Search Google Scholar
    • Export Citation
  • McCorcle, M. D., 1988: Simulation of surface-moisture effects on the Great Plains low-level jet. Mon. Wea. Rev., 116 , 17051720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors. 2000: The collaborative GCIP land data assimilation (LDAS) project and supportive NCEP uncoupled land-surface modeling initiatives. Preprints, 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 1–4.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Lacarrère P. , 1995: GCM grid-scale evaporation from mesoscale modeling. J. Climate, 8 , 206223.

  • Paegle, J., Mo K. C. , and Nogués-Paegle J. , 1996: Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev., 124 , 345361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14 , 12271242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14 , 184185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pudykiewicz, J., Benoit R. , and Mailhot J. , 1992: Inclusion and verification of a predictive cloud water scheme in a regional weather prediction model. Mon. Wea. Rev., 120 , 612626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowntree, P. R., and Bolton J. A. , 1983: Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart. J. Roy. Meteor. Soc., 109 , 501526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., Lüthi D. , Beyerle U. , and Heise E. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. , Sud C. , and Dalcher A. , 1986: A Simple Biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the earth's climate. Science, 215 , 14981501.

  • Sud, Y. C., Shukla J. , and Mintz Y. , 1988: Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor., 27 , 10361054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11 , 111133.

  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8 , 27162748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E., Lettenmaier D. , and Zartarian V. , 1992: A land surface hydrology parameterization with sub-grid variability for general circulation models. J. Geophys. Res., 97 , 27172728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., Fennessy M. J. , and Shukla J. , 1994: The influence of initial soil wetness on medium-range surface weather forecasts. Mon. Wea. Rev., 122 , 471485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, R. J., 1992: The Xinanjiang model applied in China. J. Hydrol., 134 , 317381.

  • Ziegler, C. L., Martin W. J. , Pielke R. A. , and Walko R. L. , 1995: A modeling study of the dryline. J. Atmos. Sci., 52 , 263285.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 181 17
PDF Downloads 343 112 9