The Impact of 200 Years of Land Cover Change on the Australian Near-Surface Climate

G. T. Narisma Department of Physical Geography, Macquarie University, North Ryde, New South Wales, Australia

Search for other papers by G. T. Narisma in
Current site
Google Scholar
PubMed
Close
and
A. J. Pitman Department of Physical Geography, Macquarie University, North Ryde, New South Wales, Australia

Search for other papers by A. J. Pitman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of land cover change on the Australian regional-scale climate is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Four ensemble simulations are performed consisting of January and July experiments for eight different years with a 50-km grid spacing using natural (1788) and current (1988) vegetation cover. The statistical significance of changes that occurred following the replacement of natural vegetation with current vegetation on air temperature, rainfall, latent heat flux, and other related quantities is explored. Results show that the impact of land cover change on local air temperature is statistically significant at a 99% confidence level. Furthermore, there are indications that the observed increase in local maximum air temperatures in certain regions of Australia can be partially attributed to land cover change. The results are evidence of statistically significant changes in rainfall, and the sign of these changes over Western Australia in July, and the lack of any simulated changes in January, agree with observations. These results provide further evidence of large-scale reductions in rainfall following land cover change. Changes in wind speed are also simulated and are consistent with those expected following land cover change. The results indicate that attempts to identify greenhouse-related warming in Australian air temperature records should account for the effects of both land cover change and increasing CO2 concentrations since both types of anthropogenic forcing exist in long-term observational records. Since further land cover change will occur in the future, directly via human impact and indirectly via CO2 fertilization, the results support efforts to include land surface schemes that allow the vegetation to interact with changes in climate in climate models.

Corresponding author address: Prof. A. J. Pitman, Department of Physical Geography, Macquarie University, North Ryde, NSW 2109, Australia. Email: apitman@penman.es.mq.edu.au

Abstract

The effect of land cover change on the Australian regional-scale climate is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Four ensemble simulations are performed consisting of January and July experiments for eight different years with a 50-km grid spacing using natural (1788) and current (1988) vegetation cover. The statistical significance of changes that occurred following the replacement of natural vegetation with current vegetation on air temperature, rainfall, latent heat flux, and other related quantities is explored. Results show that the impact of land cover change on local air temperature is statistically significant at a 99% confidence level. Furthermore, there are indications that the observed increase in local maximum air temperatures in certain regions of Australia can be partially attributed to land cover change. The results are evidence of statistically significant changes in rainfall, and the sign of these changes over Western Australia in July, and the lack of any simulated changes in January, agree with observations. These results provide further evidence of large-scale reductions in rainfall following land cover change. Changes in wind speed are also simulated and are consistent with those expected following land cover change. The results indicate that attempts to identify greenhouse-related warming in Australian air temperature records should account for the effects of both land cover change and increasing CO2 concentrations since both types of anthropogenic forcing exist in long-term observational records. Since further land cover change will occur in the future, directly via human impact and indirectly via CO2 fertilization, the results support efforts to include land surface schemes that allow the vegetation to interact with changes in climate in climate models.

Corresponding author address: Prof. A. J. Pitman, Department of Physical Geography, Macquarie University, North Ryde, NSW 2109, Australia. Email: apitman@penman.es.mq.edu.au

Save
  • AUSLIG, 1990: Atlas of Australian Resources: Vegetation. Australian Surveying and Land Information Group, 64 pp.

  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 , 72097225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37 , 449486.

  • Bonan, G. B., Pollard D. , and Thompson S. L. , 1992: Effects of boreal forest vegetation on global climate. Nature, 359 , 716718.

  • Bromwich, D. H., Cassano J. J. , Klein T. , Heinemann G. , Hines K. M. , Konrad K. , and Box J. E. , 2001: Mesoscale modeling of katabatic winds over Greenland with the polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, T. N., Pielke R. A. , Kittel T. G. F. , Nemani R. R. , and Running S. W. , 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn., 16 , 93105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copeland, J. H., Pielke R. A. , and Kittel T. G. F. , 1996: Potential climatic impacts of vegetation change: A regional modeling study. J. Geophys. Res., 101 , 74097418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and Foley J. A. , 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13 , 1834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couzin, J., 1999: Landscape changes make regional climate run hot and cold. Science, 283 , 317319.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, J. L., Coughenour M. B. , and Pielke R. A. , 2001: The effects of CO2 and landscape change using a coupled plant and meteorological model. Global Change Biol., 7 , 797815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., Sato M. , Lacis A. , Ruedy R. , Tegen I. , and Matthews E. , 1998: Climate forcings in the industrial era. Proc. Natl. Acad. Sci., USA, 95 , 1275312758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Dickinson R. E. , Durbridge T. B. , Kennedy T. B. , McGuffie P. J. , and Pitman A. J. , 1993: Tropical deforestation: Modeling local- to regional-scale climate change. J. Geophys. Res., 98 , 72897315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Ding Y. , Griggs D. J. , Noger M. , van der Linden P. J. , Dai X. , Maskell K. , and Johnson C. A. , Eds.,. 2001: Climate Change, 2001: The Scientific Basis. Cambridge University Press, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Huang, X., Lyons T. J. , and Smith R. C. G. , 1995: Meteorological impact of replacing native perennial vegetation with annual agricultural species. Hydrol. Processes, 9 , 645654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hui, S., Chen S. S. , and Bretherton C. S. , 1999: Three-dimensional week-long simulations of TOGA COARE convective systems using the MM5 mesoscale model. J. Atmos. Sci., 56 , 23262344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., Canadell J. , Ehleringer J. R. , Mooney H. A. , Sala O. E. , and Schulze E. D. , 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108 , 389411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavery, B., Joung G. , and Nicholls N. , 1997: An extended high quality historical rainfall data set for Australia. Aust. Meteor. Mag., 46 , 2738.

    • Search Google Scholar
    • Export Citation
  • Lyons, T. J., 2002: Clouds prefer native vegetation. Meteor. Atmos. Phys., 80 , 131140.

  • Lyons, T. J., Schwerdtferger P. , Hacker J. M. , Foster I. J. , Smith R. C. G. , and Huang X. , 1993: Land–atmosphere interaction in a semiarid region: The bunny fence experiment. Bull. Amer. Meteor. Soc., 74 , 13271334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, T. J., Smith R. C. G. , and Huang X. , 1996: The impact of clearing for agriculture on the surface energy balance. Int. J. Climatol., 16 , 551558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuffie, K., Henderson-Sellers A. , Zhang H. , Durbridge T. B. , and Pitman A. J. , 1995: Global climate sensitivity to tropical deforestation. Global Planet. Change, 10 , 97128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr., , 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39 , 151177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr., , Avissar R. , Raupach M. , Dolman A. J. , Zeng X. , and Denning A. S. , 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4 , 461475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Zhao M. , 2000: The relative impact of observed change in land cover and CO2 as simulated by a climate model. Geophys. Res. Lett., 27 , 12671270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pittock, A. B., 1983: Recent climate change in Australia: Implications for a CO2-warmed Earth. Climatic Change, 5 , 321340.

  • Pleim, J. E., and Xiu A. , 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34 , 1632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polcher, J., and Laval K. , 1994: A statistical study of the regional impact of deforestation on climate in the LMD GCM. Climate Dyn., 10 , 205219.

  • Sellers, P. J., 1992: Biophysical models of land surface processes. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 451–490.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and Smith W. E. , 1985: The influence of surface roughness of deserts on the July circulation—A numerical study. Bound.-Layer Meteor., 33 , 1549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torok, S. J., and Nicholls N. , 1996: An historical annual temperature data set for Australia. Aust. Meteor. Mag., 45 , 251260.

  • Walsh, K., and McGregor J. L. , 1995: January and July climate simulations over the Australian region using a limited-area model. J. Climate, 8 , 23872403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H., and Fu C. , 1999: Study of the sensitivity of a regional model in response to land cover change over northern China. Hydrol. Processes, 12 , 22492265.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., and Santer B. , 1990: Statistical comparison of spatial fields in model validation, perturbation, and predictability experiments. J. Geophys. Res., 95 , 851865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, A., and Pleim J. E. , 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40 , 192209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., 1997: Biosphere feedback on regional climate in tropical north Africa. Quart. J. Roy. Meteor. Soc., 123 , 14831515.

  • Zhang, H., McGuffie K. , and Henderson-Sellers A. , 1996: Impacts of tropical deforestation. Part II: The role of large-scale dynamics. J. Climate, 9 , 24982521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Henderson-Sellers A. , and McGuffie K. , 2001a: The compounding effects of tropical deforestation and greenhouse warming on climate. Climatic Change, 49 , 309338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Henderson-Sellers A. , Pitman A. J. , McGregor J. L. , Desborough C. E. , and Katzfey J. , 2001b: Limited-area model sensitivity to the complexity of representation of the land-surface energy balance. J. Climate, 14 , 39653986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Pitman A. J. , 2002: The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation. Geophys. Res. Lett., 29 , 1078. doi:10.1029/2001GL013476.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., Pitman A. J. , and Chase T. , 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17 , 467477.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 677 172 8
PDF Downloads 423 112 4