A GCM Experiment on Time Sampling for Remote Sensing of Near-Surface Soil Moisture

P. de Rosnay Centre d'Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by P. de Rosnay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The use of microwave remote sensing opens new possibilities to study global soil moisture dynamics. The measured signal is proportional to the surface moisture and temperature of a thin soil layer. Several low-frequency microwave sensors, such as the Advanced Microwave Scanning Radiometer (AMSR) in C band and Soil Moisture and Ocean Salinity (SMOS) in L band, are now being flown (AMSR) or are scheduled to be launched in the near future (SMOS, in 2005) on sun-synchronous satellite platforms. Because of the diurnal cycle of the measured surface soil moisture content and its temporal variability, the restricted time sampling by an instrument in sun-synchronous orbit may be a source of error in the monthly mean quantities used for climate and land surface processes models. This paper presents a time sampling experiment, conducted with a general circulation model, in order to estimate the representativeness of the observations of the near-surface soil moisture, at a given time of the day, for the knowledge that can be gained of the monthly mean soil moisture. Due to the high temporal variability of the near-surface soil moisture, the impact of the revisit time of the satellite is shown to be critical for the estimated monthly mean soil moisture. This study emphasizes the requirement to develop and to use assimilation methods to produce meaningful soil moisture values from remotely sensed datasets.

Corresponding author address: Patricia de Rosnay, CESBIO, 18, av. Edouard Belin, BPI 2801, 31401 Toulouse Cedex 4, France. Email: patricia.derosnay@cesbio.cnes.fr

Abstract

The use of microwave remote sensing opens new possibilities to study global soil moisture dynamics. The measured signal is proportional to the surface moisture and temperature of a thin soil layer. Several low-frequency microwave sensors, such as the Advanced Microwave Scanning Radiometer (AMSR) in C band and Soil Moisture and Ocean Salinity (SMOS) in L band, are now being flown (AMSR) or are scheduled to be launched in the near future (SMOS, in 2005) on sun-synchronous satellite platforms. Because of the diurnal cycle of the measured surface soil moisture content and its temporal variability, the restricted time sampling by an instrument in sun-synchronous orbit may be a source of error in the monthly mean quantities used for climate and land surface processes models. This paper presents a time sampling experiment, conducted with a general circulation model, in order to estimate the representativeness of the observations of the near-surface soil moisture, at a given time of the day, for the knowledge that can be gained of the monthly mean soil moisture. Due to the high temporal variability of the near-surface soil moisture, the impact of the revisit time of the satellite is shown to be critical for the estimated monthly mean soil moisture. This study emphasizes the requirement to develop and to use assimilation methods to produce meaningful soil moisture values from remotely sensed datasets.

Corresponding author address: Patricia de Rosnay, CESBIO, 18, av. Edouard Belin, BPI 2801, 31401 Toulouse Cedex 4, France. Email: patricia.derosnay@cesbio.cnes.fr

Save
  • Beljaars, A. C. M., Viterbo P. , Miller M. , and Betts A. , 1996: Sensitivity to land surface parameterization and soil anomalies. Mon. Wea. Rev., 124 , 362383.

    • Search Google Scholar
    • Export Citation
  • Calvet, J. C., Noilhan J. , and Bessemonlin P. , 1998: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37 , 371386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capderou, M., 2002: Satellites: Orbites et Missions. Springer, 502 pp.

  • Delworth, T. L., and Manabe S. , 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1 , 523547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Polcher J. , 1998: Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2 (2–3) 239255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., Bruen M. , and Polcher J. , 2000: Sensitivity of the surface fluxes to the number of layers in the soil models used for GCMs. Geophys. Res. Lett., 27 , 33293332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., Polcher J. , Bruen M. , and Laval K. , 2002: Impact of a physically based soil water flow and soil–plant interaction representation for modeling large scale land surface processes. J. Geophys. Res., 107 (11) 4118, doi:10.1029/2001JD000634.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N., Laval K. , and Perrier A. , 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6 , 248273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Nakamura H. , and Njoku E. , 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32 , 438448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galantowitcz, J., Entekhabi D. , and Njoku E. , 1999: Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness. IEEE Trans. Geosci. Remote Sens., 37 , 18601870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., and Coauthors. 1997: The variability of evaporation during the HAPEX-Sahel intensive observation period. J. Hydrol., 189 , 385399.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Petch J. , 2001: Diurnal cycle of deep convection over land. First Year Report of the European Project on Cloud Systems in Climate Models. [Available online at http://www.cnrm.meteo.fr/gcss/EUROCS/EUROCS.html.].

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., Kandel R. , and Stubenrauch C. , 1999: Improved diurnal interpolation of reflected broadband shortwave observations using ISCCP data. J. Atmos. Oceanic Technol., 16 , 3854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harzallah, A., Rocha de Aragao J. , and Sadourny R. , 1996: Interannual rainfall variability in north-east Brazil: Observation and model simulation. Int. J. Climatol., 16 , 861878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., Le Vine D. M. , Hsu A. , Oldack A. , Starks P. , Swift C. , Isham J. , and Haken M. , 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains hydrology experiment. IEEE Trans. Geosci. Remote Sens., 37 , 21362149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y., Waldteufel P. , Wigneron J-P. , Martinuzzi J-M. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., and Suarez M. , 1995: Relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100 (D7) 1377513790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and Li Z-X. , 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1984: Prescription of land-surface boundary conditions in GISS GCM II: A simple method based on high-resolution vegetation data bases. NASA Tech. Memo. 86096, 20 pp.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Dunne K. A. , 1994: Sensitivity of the global water cycle to the water-holding capacity of land. J. Climate, 7 , 506526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E., and Entekhabi D. , 1996: Passive microwave remote sensing of soil moisture. J. Hydrol., 184 , 101129.

  • Pellarin, T., and Coauthors. 2002: Two-year global simulation of L-band brightness temperature over land. IEEE Trans. Geosci. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., 1995: Sensitivity of tropical convection to land surface processes. J. Atmos. Sci., 52 , 31443161.

  • Polcher, J., and Laval K. , 1994: A statistical study of regional impact of deforestation on climate of the LMD-GCM. Climate Dyn., 10 , 205219.

  • Raju, S., Chanzy A. , Wigneron J. , Calvet J-C. , Kerr Y. , and Laguerre L. , 1995: Soil moisture and temperature profile effect on microwave emission at low frequencies. Remote Sens. Environ., 54 , 8597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., 2001: February 2001: First Year Report of the European Project on Cloud Systems in Climate Models. [Available online at http://www.cnrm.meteo.fr/gcss/EUROCS/EUROCS.html.].

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., and Laval K. , 1984: January and July performance of the LMD general circulation model. New Perspectives in Climate Modelling, A. L. Berger and C. Nicolis, Eds., Elsevier, 173–197.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T., 1983: Remote sensing of soil moisture: Recent advances. IEEE Trans. Geosci. Remote Sens., 21 , 336344.

  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evaporation on the earth's climate. Science, 215 , 14981501.

  • Taylor, C., and Clark D. , 2001: The diurnal cycle and African easterly waves: A land surface perspective. Quart. J. Roy. Meteor. Soc., 127 , 845867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., and Nielsen D. R. , 1985: On describing and predicting the hydraulic properties of unsaturated soils. Ann. Geophys., 3 , 595628.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K., Robock A. , Speranskaya N. A. , and Schlosser C. A. , 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , 71637174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J., and Houser P. , 2001: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106 (D11) 1176111774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J., Willgoose G. R. , and Kalma J. D. , 2001: Assimilation of near-surface observations: A comparison of retrieval algorithms. Adv. Water Res., 24 , 631650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. R., 1987: Microwave emission from smooth bare fields and soil moisture sampling depth. Remote Sens. Environ., 25 , 616622.

  • Wigneron, J., Schmugge T. , Chanzy A. , Calvet J. , and Kerr Y. , 1998: Use of passive microwave remote sensing to monitor soil moisture. Agronomie, 18 , 2743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zobler, L., 1986: A world soil file for global climate modeling. NASA Tech. Memo. 87802, 33 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 30 1
PDF Downloads 35 9 1