Sequential Assimilation of ERS-1 SAR Data into a Coupled Land Surface–Hydrological Model Using an Extended Kalman Filter

C. Francois CETP, Velizy, and ESE, Université Paris Sud, Orsay, France

Search for other papers by C. Francois in
Current site
Google Scholar
PubMed
Close
,
A. Quesney CETP, Velizy, France

Search for other papers by A. Quesney in
Current site
Google Scholar
PubMed
Close
, and
C. Ottlé CETP, Velizy, France

Search for other papers by C. Ottlé in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A first attempt to sequentially assimilate European Space Agency (ESA) Remote Sensing Satellite (ERS) synthetic aperture radar (SAR) estimations of surface soil moisture in the production scheme of a lumped rainfall–runoff model has been conducted. The methodology developed is based on the use of an extended Kalman filter to assimilate the SAR retrievals in a land surface scheme (a two-layer hydrological model). This study was performed in the Orgeval agricultural river basin (104 km2), a subcatchment of the Marne River, 70 km east of Paris, France. Assimilation was tested over a 2-yr period (1996 and 1997), corresponding to 25 SAR measurements. The improvements observed in simulating flood events demonstrate the potential of sequential assimilation techniques for monitoring surface functioning models with remote sensing data. It was demonstrated that the method could correct for some errors or uncertainties in the input data (precipitation and evapotranspiration), provided that these errors are not greater than 10%. The overall agreement between uncertainties predicted through the extended Kalman filter scheme compared to uncertainties obtained through the ensemble technique reaffirms the validity of the extended Kalman filter scheme but also demonstrates its limits. Questions are raised concerning the determination of sequential model errors.

Corresponding author address: Christophe Francois, ESE, Université Paris Sud, Bât 362, 91405 Orsay Cedex, France. Email: christophe.francois@ese.u-psud.fr

Abstract

A first attempt to sequentially assimilate European Space Agency (ESA) Remote Sensing Satellite (ERS) synthetic aperture radar (SAR) estimations of surface soil moisture in the production scheme of a lumped rainfall–runoff model has been conducted. The methodology developed is based on the use of an extended Kalman filter to assimilate the SAR retrievals in a land surface scheme (a two-layer hydrological model). This study was performed in the Orgeval agricultural river basin (104 km2), a subcatchment of the Marne River, 70 km east of Paris, France. Assimilation was tested over a 2-yr period (1996 and 1997), corresponding to 25 SAR measurements. The improvements observed in simulating flood events demonstrate the potential of sequential assimilation techniques for monitoring surface functioning models with remote sensing data. It was demonstrated that the method could correct for some errors or uncertainties in the input data (precipitation and evapotranspiration), provided that these errors are not greater than 10%. The overall agreement between uncertainties predicted through the extended Kalman filter scheme compared to uncertainties obtained through the ensemble technique reaffirms the validity of the extended Kalman filter scheme but also demonstrates its limits. Questions are raised concerning the determination of sequential model errors.

Corresponding author address: Christophe Francois, ESE, Université Paris Sud, Bât 362, 91405 Orsay Cedex, France. Email: christophe.francois@ese.u-psud.fr

Save
  • Bernard, R., Soarès J. V. , and Vidal-Madjar D. , 1986: Differential bare field drainage properties from airborne microwave observation. Water Resour. Res., 22 , 869875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1986: Regional scale estimates of surface moisture availability and thermal inertia. Remote Sens. Rev., 1 , 197247.

  • Cognard, A. L., 1996: Suivi de l'état hydrique des sols par télédétection spatiale (radar et thermographie infrarouge) et modélisation hydrologique à l'échelle du bassin versant. Ph.D. thesis, Université Paris XI Orsay, 135 pp.

    • Search Google Scholar
    • Export Citation
  • Edijatno, 1991: Mise au point d'un modèle élémentaire pluie-débit au pas de temps journalier. Ph.D. thesis, Université de Strasbourg, 242 pp.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Nakamura H. , and Njoku E. G. , 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32 , 438448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5) 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1997a: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125 , 13421354.

  • Evensen, G., 1997b: Application of ensemble integrations for predictability studies and data assimilation. Monte Carlo Simulations in Oceanography: Proc. ‘Aha Huliko’ a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 11–22. [Available online at http://fram.nrsc.no/∼geir/.].

    • Search Google Scholar
    • Export Citation
  • Franks, S. W., and Beven K. J. , 1997: Bayesian estimation of uncertainty in land surface–atmosphere flux predictions. J. Geophys. Res., 102 (D20) 2399123999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, S. W., Beven K. J. , and Gash J. H. C. , 1999: Multi-objective conditioning of a simple SVAT model. Hydrol. Earth Syst. Sci., 3 , 477489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galantowicz, J. F., Entekhabi D. , and Njoku E. G. , 1999: Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness. IEEE Trans. Geosci. Remote Sens., 37 , 18601870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Bastidas L. A. , Sorooshian S. , Shuttleworth W. J. , and Yang Z. L. , 1999: Parameter estimation of a land surface scheme using multi-criteria methods. J. Geophys. Res., 104 (D16) 1949119504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoeben, R., and Troch P. A. , 2000: Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour. Res., 36 , 28052819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, P. R., Shuttleworth W. J. , Famiglietti J. S. , Gupta H. V. , Syed K. , and Goodrich D. C. , 1998: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res., 34 , 34053420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. H. M., and Heuberger P. S. C. , 1995: Calibration of process-oriented models. Ecol. Modell., 83 , 5566.

  • Jazwinsky, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kitanidis, P. K., and Bras R. L. , 1980a: Real-time forecasting with a conceptual hydrologic model. 1. Analysis of uncertainties. Water Resour. Res., 16 , 10251033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitanidis, P. K., and Bras R. L. , 1980b: Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resour. Res., 16 , 10341044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Hégarat-Mascle, S., Zribi M. , Alem F. , and Weisse A. , 2002: Soil moisture estimation from ERS/SAR data: Toward an operational methodology. IEEE Trans. Geosci. Remote Sens., 40 , 26472658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loumagne, C., Michel C. , and Normand M. , 1991: Etat hydrique du sol et prévision des débits. J. Hydrol., 123 , 117.

  • Loumagne, C., Chkir N. , Normand M. , Ottlé C. , and Vidal-Madjar D. , 1996: Introduction of the soil/vegetation/atmosphere continuum in a conceptual rainfall/runoff model. Hydrol. Sci. J., 41 , 889902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., and Noilhan J. , 1996: Inclusion of gravitational drainage in a land surface scheme based on the force restore method. J. Appl. Meteor., 35 , 987992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe V. , 1970: River forecasting through conceptual models. J. Hydrol., 10 , 282290.

  • Njoku, E. G., and Kong J. A. , 1977: Theory for passive microwave remote sensing of near-surface soil moisture. J. Geophys. Res., 82 , 31083118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottlé, C., and Vidal-Madjar D. , 1994: Assimilation of humidity inferred from infrared remote sensing in a hydrological model over the HAPEX/MOBILHY region. J. Hydrol., 158 , 241264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., Hoeben R. , Verhoest N. E. C. , and de Troch F. P. , 2001: The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. J. Hydrol., 251 , 88102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quesney, A., 1999: Assimilation de mesures d'humidité de surface dans un modèle hydrologique conceptuel global. Apport de la télédétection radar ERS/SAR. Ph.D. thesis, Université Paris 7, 180 pp.

    • Search Google Scholar
    • Export Citation
  • Quesney, A., Le Hégarat-Mascle S. , Taconet O. , Vidal-Madjar D. , Wigneron J. P. , Loumagne C. , and Normand M. , 2000: Estimation of watershed soil moisture index from ERS/SAR data. Remote Sens. Environ., 72 , 290303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., Entekhabi D. , and McLaughlin D. , 2000: Downscaling of radiobrightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res., 37 , 23532364.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., McLaughlin D. B. , and Entekhabi D. , 2001: Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens., 39 , 17081718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., McLaughlin D. B. , and Entekhabi D. , 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spear, R. C., and Hornberger G. M. , 1980: Eutrophication in Peel Inlet. II. Identification of critical uncertainties via generalised sensitivity analysis. Water Res., 14 , 4349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1986: From Theory to Applications. Vol. III, Microwave Remote Sensing: Active and Passive, Artech House, 1200 pp.

    • Search Google Scholar
    • Export Citation
  • Walker, J. P., 1999: Estimating soil moisture profile dynamics from near-surface soil moisture measurements and standard meteorological data. Ph.D. thesis, University of Newcastle, 767 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1615 183 9
PDF Downloads 158 34 6