• Avissar, R., 1992: Conceptual aspects of a statistical-dynamic approach to represent landscape subgrid-scale heterogeneities in atmospheric models. J. Geophys. Res., 97 , 27292742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Pielke R. A. , 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117 , 21132136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., , and Gent P. R. , 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Chen, M., , Dickinson R. E. , , Zeng X. , , and Hahmann A. N. , 1996: Comparison of precipitation observed over the continental United States to that simulated by a climate model. J. Climate, 9 , 22332249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , Henderson-Sellers A. , , and Kennedy P. J. , 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978: Climate, soil and vegetation. 2. The distribution of annual precipitation derived from observed storm sequences. Water Resour. Res., 14 , 713721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., , Fennessey N. M. , , Qinliang W. , , and Rodriguez-Iturbe I. , 1987: Application of spatial Poisson models to air mass thunderstorm rainfall. J. Geophys. Res., 92 , 96619678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., , and Bras R. L. , 1993a: A description of rainfall interception over large areas. J. Climate, 6 , 10021008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., , and Bras R. L. , 1993b: Estimation of the fractional coverage of rainfall in climate models. J. Climate, 6 , 639644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., , and Bras R. L. , 1994: Precipitation recycling in the Amazon Basin. Quart. J. Roy. Meteor. Soc., 120 , 861880.

  • Entekhabi, D., , and Eagleson P. S. , 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale variability. J. Climate, 2 , 816831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X. G., , and Sorooshian S. , 1994: A stochastic precipitation disaggregation scheme for GCM applications. J. Climate, 7 , 238247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., , and Valdes P. J. , 2000: The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett., 27 , 30533056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and Avissar R. , 1997: Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling. Rev. Geophys., 35 , 413437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., , Entekhabi D. , , and Salvucci G. D. , 1994: Regional and seasonal estimates of fractional storm coverage based on station precipitation observations. J. Climate, 7 , 14951505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., , and Dickinson R. E. , 1997: RCCM2/BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10 , 19441964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., , and Dickinson R. E. , 2001: A fine-mesh land approach for general circulation models and its impact on regional climate. J. Climate, 14 , 16341646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, K. D., , Entekhabi D. , , and Eagleson P. S. , 1993: The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model. J. Climate, 6 , 10091026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97 , 26972715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., , and Ghan S. J. , 1995: A subgrid parameterization of orographic precipitation. Theor. Appl. Climatol., 52 , 95118.

  • Nykanen, D. K., , Foufoula-Georgiou E. , , and Lapenta W. M. , 2001: Impact of small-scale rainfall variability on larger-scale spatial organization of land–atmosphere fluxes. J. Hydrometeor., 2 , 105121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onof, C., , Mackay N. G. , , Oh L. , , and Wheater H. S. , 1998: An improved rainfall disaggregation technique for GCMs. J. Geophys. Res., 103 , 1957719586.

  • Perica, S., , and Foufoula-Georgiou E. , 1996a: Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems. J. Geophys. Res., 101 , 74317448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., , and Foufoula-Georgiou E. , 1996b: Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101 , 2634726361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., , Henderson-Sellers A. , , and Yang Z. L. , 1990: Sensitivity of regional climates to localised precipitation in global models. Nature, 364 , 734737.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors. 1996: The ISLSCP Initiative I global datasets: Surface boundary conditions and atmospheric forcings for land–atmosphere studies. Bull. Amer. Meteor. Soc., 77 , 19872005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1988: Macrohydrology—The new challenge for process hydrology. J. Hydrol., 100 , 3156.

  • Thomas, G., , and Henderson-Sellers A. , 1991: An evaluation of proposed representation of subgrid hydrologic processes in climate models. J. Climate, 4 , 898910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. L., , and Eltahir E. A. B. , 2000: Modeling the biosphere–atmosphere system: The impact of the subgrid variability in rainfall interception. J. Climate, 13 , 28872899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrilow, D. A., , Sangster A. B. , , and Slingo A. , 1986: Modelling of land-surface processes and their influence on European climate. Met Office Dynamics of Climatology Tech. Note DCTN 38.

    • Search Google Scholar
    • Export Citation
  • Wheater, H. S., , Jolley T. J. , , Onof C. , , Mackay N. , , and Chandler R. E. , 1999: Analysis of aggregation and disaggregation effects for grid-based hydrological models and the development of improved precipitation disaggregation procedures for GCMs. Hydrol. Earth Syst. Sci., 3 , 95108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., , Lettenmaier D. P. , , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97 , 27172728.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 8
PDF Downloads 9 9 1

Representing Spatial Subgrid-Scale Precipitation Variability in a GCM

View More View Less
  • 1 Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

A method for spatial disaggregation of rainfall to be used within a GCM is presented and the climate sensitivity to its parameters is assessed. The method is based on the assumption of exponential distribution of rainfall rates that are a function of the area of the GCM grid square where precipitation is occurring. When the method is applied in offline experiments, decreasing the fractional area where precipitation occurs decreases canopy interception, and, therefore, the partition of surface evaporation between leaf water evaporation and canopy transpiration. The climate, simulated using the precipitation disaggregation scheme, shows considerable changes from the simulated control climate with overall warmer and drier tropical land and warmer high-latitude continental areas. Changes in the simulated climate can be explained by direct local land–atmosphere interaction processes enhanced by regional atmospheric feedback mechanisms and remote responses to changes in tropical heating linked to differences in precipitation.

Corresponding author address: Dr. Andrea N. Hahmann, Institute of Atmospheric Physics, The University of Arizona, PAS Building 81, Tucson, AZ 85721. Email: hahmann@atmo.arizona.edu

Abstract

A method for spatial disaggregation of rainfall to be used within a GCM is presented and the climate sensitivity to its parameters is assessed. The method is based on the assumption of exponential distribution of rainfall rates that are a function of the area of the GCM grid square where precipitation is occurring. When the method is applied in offline experiments, decreasing the fractional area where precipitation occurs decreases canopy interception, and, therefore, the partition of surface evaporation between leaf water evaporation and canopy transpiration. The climate, simulated using the precipitation disaggregation scheme, shows considerable changes from the simulated control climate with overall warmer and drier tropical land and warmer high-latitude continental areas. Changes in the simulated climate can be explained by direct local land–atmosphere interaction processes enhanced by regional atmospheric feedback mechanisms and remote responses to changes in tropical heating linked to differences in precipitation.

Corresponding author address: Dr. Andrea N. Hahmann, Institute of Atmospheric Physics, The University of Arizona, PAS Building 81, Tucson, AZ 85721. Email: hahmann@atmo.arizona.edu

Save