• Beljaars, A. C. M., , Viterbo P. , , Miller M. J. , , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., , Noilhan J. , , and Bessemoulin P. , 1998: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37 , 371386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cihlar, J., , and Ulaby F. T. , 1974: Dielectric properties of soils as a function of moisture content. RSL Tech. Rep. 177-47/NASA, CR-141868, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., , and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Dirmeyer, P. A., 1999: Assessing GCM sensitivity to soil wetness using GSWP data. J. Meteor. Soc. Japan, 77 , 367385.

  • Dirmeyer, P. A., 2001: An evaluation of the strength of land–atmosphere coupling. J. Hydrometeor., 2 , 329344.

  • Douville, H., , and Chauvin F. , 2000: Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dyn., 16 , 719736.

  • Entin, J. K., , Robock A. , , Vinikov K. Y. , , Zabelin V. , , Liu S. , , Namkhai A. , , and Adyasuren T. , 1999: Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan, 77 , 183198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., , and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fung, A. K., 1994: Microwave Scattering and Emission Models and Their Applications. Vol. III, Artech House, 573 pp.

  • Huffman, G. J., and Coauthors. 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanae, S., , Oki T. , , and Musiake K. , 2001: Impact of deforestation on regional precipitation over the Indochina Peninsula. J. Hydrometeor., 2 , 5170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and Milly P. C. D. , 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Koster, R. D., , Suarez M. J. , , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev., 97 , 739774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mintz, Y., , and Serafini Y. V. , 1992: A global monthly climatology of soil-moisture and water-balance. Climate Dyn., 8 , 1327.

  • Numaguti, A., , Takahashi M. , , Nakajima T. , , and Sumi A. , 1997: Study on the climate system and mass transport by a climate model. CCSR's supercomputer monograph report, Vol. 3, National Institute for Environmental Research, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , Nishimura T. , , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., , Seto S. , , and Musiake K. , 2000: Land surface monitoring by backscattering coefficient from TRMM/PR 2A21. Proc. Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 2032–2034.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1 , 7587.

  • Schmugge, T. J., 1983: Remote sensing of soil moisture: Recent advances. IEEE Trans. Geosci. Remote Sens., GE-21. 336344.

  • Sellers, P. J., , Mintz Y. , , Sud Y. C. , , and Dalcher A. , 1986: A Simple Biosphere Model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors. 1995: ISLSCP Initiative I—Global Data Sets for Land–Atmosphere Models, 1987–1988. NASA, CD-ROM.

  • Seto, S., 2003: Soil moisture estimation by microwave remote sensing on global scale. Ph.D. thesis, University of Tokyo, 118 pp.

  • Shukla, J., , and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the earth's climate. Science, 215 , 14981501.

  • Walker, J. P., , and Houser P. R. , 2001: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106 (D11) 1176111774.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 6
PDF Downloads 9 9 2

Application of Satellite-Derived Surface Soil Moisture Data to Simulating Seasonal Precipitation by a Simple Soil Moisture Transfer Method

View More View Less
  • 1 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

A simple algorithm is presented for transferring root-zone soil moisture from surface soil moisture data on a global scale. Analysis of offline soil moisture data shows that the climatological relationship between surface and root-zone soil moisture becomes linear when appropriate time lags are applied. The climatological relationship of root-zone soil moisture among different land surface models (LSMs) is also linear; therefore, the root-zone and surface soil moisture obtained from one LSM can be applied to another. The algorithm is then applied to the surface soil moisture observations made by the precipitation radar on board the Tropical Rainfall Measuring Mission precipitation radar (TRMM/PR), and the transferred root-zone soil moisture is input to a general circulation model (GCM) summer—June, July, August—precipitation simulation as the boundary condition. The approach is computationally efficient, and the simulation using the root-zone soil moisture by the transfer method is much better than a simulation using root-zone soil moisture without the transfer method, assuming that the volumetric percentage of TRMM/PR is representative of the root zone. The result indicates that the simple transfer process will increase the utility of surface soil moisture data for a GCM.

Corresponding author address: Yukiko Hirabayashi, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. Email: yukko@iis.u-tokyo.ac.jp

Abstract

A simple algorithm is presented for transferring root-zone soil moisture from surface soil moisture data on a global scale. Analysis of offline soil moisture data shows that the climatological relationship between surface and root-zone soil moisture becomes linear when appropriate time lags are applied. The climatological relationship of root-zone soil moisture among different land surface models (LSMs) is also linear; therefore, the root-zone and surface soil moisture obtained from one LSM can be applied to another. The algorithm is then applied to the surface soil moisture observations made by the precipitation radar on board the Tropical Rainfall Measuring Mission precipitation radar (TRMM/PR), and the transferred root-zone soil moisture is input to a general circulation model (GCM) summer—June, July, August—precipitation simulation as the boundary condition. The approach is computationally efficient, and the simulation using the root-zone soil moisture by the transfer method is much better than a simulation using root-zone soil moisture without the transfer method, assuming that the volumetric percentage of TRMM/PR is representative of the root zone. The result indicates that the simple transfer process will increase the utility of surface soil moisture data for a GCM.

Corresponding author address: Yukiko Hirabayashi, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. Email: yukko@iis.u-tokyo.ac.jp

Save