Distributed Quantitative Precipitation Forecasting Using Information from Radar and Numerical Weather Prediction Models

Auroop R. Ganguly Ralph M. Parsons Laboratory, Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Auroop R. Ganguly in
Current site
Google Scholar
PubMed
Close
and
Rafael L. Bras Ralph M. Parsons Laboratory, Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Rafael L. Bras in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The benefits of short-term (1–6 h), distributed quantitative precipitation forecasts (DQPFs) are well known. However, this area is acknowledged to be one of the most challenging in hydrometeorology. Previous studies suggest that the “state of the art” methods can be enhanced by exploiting relevant information from radar and numerical weather prediction (NWP) models, using process physics and data-dictated tools where each fits best. Tests indicate that improved results are obtained by decomposing the overall problem into component processes, and that each process may require alternative tools ranging from simple interpolation to statistical time series models and artificial neural networks (ANNs). A new hybrid modeling strategy is proposed for DQPF that utilizes measurements from radar [Weather Surveillance Radar-1998 Doppler (WSR-88D) network: 4 km, 1 h] and outputs from NWP models (48-km Eta Model: 48 km, 6 h). The proposed strategy improves distributed QPF over existing methods like radar extrapolation or NWP-based QPF by themselves, as well as combinations of radar extrapolation and NWP-based QPF.

Corresponding author address: Professor Rafael L. Bras, Ralph M. Parsons Laboratory, Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: rlbras@mit.edu

Abstract

The benefits of short-term (1–6 h), distributed quantitative precipitation forecasts (DQPFs) are well known. However, this area is acknowledged to be one of the most challenging in hydrometeorology. Previous studies suggest that the “state of the art” methods can be enhanced by exploiting relevant information from radar and numerical weather prediction (NWP) models, using process physics and data-dictated tools where each fits best. Tests indicate that improved results are obtained by decomposing the overall problem into component processes, and that each process may require alternative tools ranging from simple interpolation to statistical time series models and artificial neural networks (ANNs). A new hybrid modeling strategy is proposed for DQPF that utilizes measurements from radar [Weather Surveillance Radar-1998 Doppler (WSR-88D) network: 4 km, 1 h] and outputs from NWP models (48-km Eta Model: 48 km, 6 h). The proposed strategy improves distributed QPF over existing methods like radar extrapolation or NWP-based QPF by themselves, as well as combinations of radar extrapolation and NWP-based QPF.

Corresponding author address: Professor Rafael L. Bras, Ralph M. Parsons Laboratory, Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: rlbras@mit.edu

Save
  • Antolik, M. S., 2000: An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts. J. Hydrol., 239 , 306337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 1996: Neural Networks for Pattern Recognition. Oxford University Press, 256 pp.

  • Black, T. L., 1994: The use of NMC mesoscale eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K., 1998: Phase correcting assimilation of radar data for thunderstorm forecasting. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 181–184.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., 1991: The combined use of weather radar and mesoscale numerical model data for short-period rainfall forecasting. Hydrological Application of Weather Radar, I. D. Cluckie and C. G. Collier, Eds., E. Horwood, 644 pp.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., and Kzyzysztofowicz R. , 2000: Preface: Quantitative precipitation forecasting. J. Hydrol., 239 , 12.

  • Connor, J. T., Martin R. D. , and Atlas L. E. , 1994: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks, 5 , 240254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K., and Coauthors, 2000: Hydrological aspects of weather prediction and flood warnings. Bull. Amer. Meteor. Soc., 81 , 26652680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elshorbagy, A., Simonovic S. P. , and Panu U. S. , 2002a: Estimation of missing streamflow data using principles of chaos theory. J. Hydrol., 255 , 123133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elshorbagy, A., Simonovic S. P. , and Panu U. S. , 2002b: Noise reduction in chaotic hydrologic time series: Facts and doubts. J. Hydrol., 256 , 147165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. weather research program. Bull. Amer. Meteor. Soc., 79 , 285299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D-J. , Miller D. A. , and O'Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and Zawadzki I. , 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130 , 28592873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 2000: Quantitative precipitation forecasting in the UK. J. Hydrol., 239 , 286305.

  • Grecu, M., and Krajewski W. F. , 2000: A large-sample investigation of statistical procedures for short-term quantitative precipitation forecasting. J. Hydrol., 239 , 6984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., Zhang S. Q. , da Silva A. M. , Olson W. S. , Kummerow C. D. , and Simpson J. , 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82 , 659679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K-L., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., and Barros A. P. , 2001: Combining IR-microwave satellite retrieval of temperature and dewpoint profiles using artificial neural networks. J. Appl. Meteor., 40 , 20512067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H. T., and Georgakakos K. P. , 1996: Operational rainfall prediction on meso-γ scales for hydrologic applications. Water Resour. Res., 32 , 9871003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKay, D. J. C., 1994: Bayesian non-linear modelling for the prediction competition. ASHRAE Trans., 100 , 10531062.

  • McLaughlin, D., Islam S. , Entekhabi D. , French M. , and Bras R. , 1990: A distributed filtering approach to real-time rainfall forecasting. Preprints, Eighth Conf. on Hydrometeorology, Kananaskis Park, Alberta, Canada, Amer. Meteor. Soc., 150–155.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1996: Improvements in quantitative precipitation forecasts with the eta regional model at the National Centers for Environmental Prediction: The 48-km upgrade. Bull. Amer. Meteor. Soc., 77 , 26372649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, T. C., 1990: Time Series Techniques for Economists. Cambridge University Press, 377 pp.

  • Nakakita, E., Ikebuchi S. , Kanamuri T. , Okuda M. , Yamaji A. , and Takasao T. , 1996: Short-term rainfall prediction model using a volume scanning radar and grid point value data from numerical weather prediction. J. Geophys. Res., 101 , 2618126197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and Foufoula-Georgiou E. , 1996: A model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101 (D21) 2634726361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., and Eagleson P. S. , 1987: Mathematical models of rainstorm events in space and time. Water Resour. Res., 23 , 181190.

  • Rogers, R. R., and Yau M. K. , 1989: A Short Course in Cloud Physics. Pergamon, 293 pp.

  • Smith, K. T., and Austin G. L. , 2000: Nowcasting precipitation—A proposal for a way forward. J. Hydrol., 239 , 3445.

  • Sugimoto, S., Nakakita E. , and Ikebuchi S. , 2001: A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model. J. Hydrol., 242 , 137155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, E., Brath A. , and Montanari A. , 2000: Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol., 239 , 132147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Crook N. A. , Mueller C. K. , Sun J. , and Dixon M. , 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79 , 20792100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, C. B., Bradley A. A. , Krajewski W. F. , and Kruger A. , 2000: Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting. J. Hydrometeor., 1 , 241254.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 941 376 109
PDF Downloads 318 67 11