Abstract
The importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation data is used to force the “true” model solution, and reanalysis data for the prior (or background) fields. The difference between the two precipitation datasets is thought to be representative of errors that might be encountered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation errors in the (volumetric) root zone moisture content are 0.015 m3 m−3 for the 3D-EnKF, 0.019 m3 m−3 for the 1D-EnKF, and 0.036 m3 m−3 without assimilation. Clearly, taking horizontal error correlations into account improves estimation accuracy. Soil moisture estimation errors in the 3D-EnKF are smallest for a correlation scale of 2° in model parameter and forcing errors, which coincides with the horizontal scale of difference fields between gauge-based and reanalysis precipitation. In this case the 3D-EnKF requires 1.6 times the computational effort of the 1D-EnKF, but this factor depends on the experiment setup.
Corresponding author address: Rolf Reichle, NASA Goddard Space Flight Center, Code 900.3, Bldg 33, Rm A-110, Greenbelt Road, Greenbelt, MD 20771. Email: reichle@janus.gsfc.nasa.gov