Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation

Rolf H. Reichle Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore, Baltimore, and Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf H. Reichle in
Current site
Google Scholar
PubMed
Close
and
Randal D. Koster Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation data is used to force the “true” model solution, and reanalysis data for the prior (or background) fields. The difference between the two precipitation datasets is thought to be representative of errors that might be encountered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation errors in the (volumetric) root zone moisture content are 0.015 m3 m−3 for the 3D-EnKF, 0.019 m3 m−3 for the 1D-EnKF, and 0.036 m3 m−3 without assimilation. Clearly, taking horizontal error correlations into account improves estimation accuracy. Soil moisture estimation errors in the 3D-EnKF are smallest for a correlation scale of 2° in model parameter and forcing errors, which coincides with the horizontal scale of difference fields between gauge-based and reanalysis precipitation. In this case the 3D-EnKF requires 1.6 times the computational effort of the 1D-EnKF, but this factor depends on the experiment setup.

Corresponding author address: Rolf Reichle, NASA Goddard Space Flight Center, Code 900.3, Bldg 33, Rm A-110, Greenbelt Road, Greenbelt, MD 20771. Email: reichle@janus.gsfc.nasa.gov

Abstract

The importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation data is used to force the “true” model solution, and reanalysis data for the prior (or background) fields. The difference between the two precipitation datasets is thought to be representative of errors that might be encountered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation errors in the (volumetric) root zone moisture content are 0.015 m3 m−3 for the 3D-EnKF, 0.019 m3 m−3 for the 1D-EnKF, and 0.036 m3 m−3 without assimilation. Clearly, taking horizontal error correlations into account improves estimation accuracy. Soil moisture estimation errors in the 3D-EnKF are smallest for a correlation scale of 2° in model parameter and forcing errors, which coincides with the horizontal scale of difference fields between gauge-based and reanalysis precipitation. In this case the 3D-EnKF requires 1.6 times the computational effort of the 1D-EnKF, but this factor depends on the experiment setup.

Corresponding author address: Rolf Reichle, NASA Goddard Space Flight Center, Code 900.3, Bldg 33, Rm A-110, Greenbelt Road, Greenbelt, MD 20771. Email: reichle@janus.gsfc.nasa.gov

Save
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17 , 187208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L., and Coauthors, 2003: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., van Leeuwen P. J. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., 2003: Correcting land surface model predictions for the impact of temporally sparse rainfall rate measurements using an ensemble Kalman filter and surface brightness temperature observations. J. Hydrometeor., 4 , 960973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Jeu, R. A. M., 2003: Retrieval of land surface parameters using passive microwave remote sensing. Ph.D. dissertation, Vrije Universiteit Amsterdam, 122 pp.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Koster R. D. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model, 2, Parameter estimation and model demonstration. J. Geophys. Res., 105 , 2482324838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5) 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J., Kallberg P. , Uppala S. , Hernandez A. , Nomura A. , and Serrano E. , 1997: ERA description. ECMWF Re-Analysis Project Report Series 1, 72 pp. [Available from the European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Guillevic, P., Koster R. D. , Suarez M. J. , Bounoua L. , Collatz G. J. , Los S. O. , and Mahanama S. P. P. , 2002: Influence of the interannual variability of vegetation on the surface energy balance—A global sensitivity study. J. Hydrometeor., 3 , 617629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Snyder C. , 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Snyder C. , 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heemink, A. W., Verlaan M. , and Seegers A. J. , 2001: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev., 129 , 17181728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas, No. 7, National Oceanic and Atmospheric Administration, 40 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/index.html.].

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., and Rienecker M. M. , 2002: Initial testing of a massively parallel Ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130 , 29512965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4 , 408423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000a: A catchment-based approach to modeling land surface processes in a general circulation model, 1, Model structure. J. Geophys. Res., 105 , 2480924822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000b: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., McLaughlin D. , Entekhabi D. , and Dunne S. , 2002: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour. Res., 38 .1299, doi:10.1029/2001WR001114.

    • Search Google Scholar
    • Export Citation
  • Owe, M., de Jeu R. , and Walker J. , 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39 , 16431654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129 , 11941207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Entekhabi D. , and McLaughlin D. B. , 2001: Downscaling of radiobrightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res., 37 , 23532364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., McLaughlin D. B. , and Entekhabi D. , 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Walker J. P. , Koster R. D. , and Houser P. R. , 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., Anderson J. L. , Bishop C. H. , Hamill T. M. , and Whitaker J. S. , 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., and Houser P. R. , 2001: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106 , 1176111774.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 717 257 85
PDF Downloads 345 96 17