Simulations of Snow, Ice, and Near-Surface Atmospheric Processes on Ice Station Weddell

Edgar L. Andreas U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Search for other papers by Edgar L. Andreas in
Current site
Google Scholar
PubMed
Close
,
Rachel E. Jordan U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Search for other papers by Rachel E. Jordan in
Current site
Google Scholar
PubMed
Close
, and
Aleksandr P. Makshtas International Arctic Research Center, Fairbanks, Alaska, and Arctic and Antarctic Research Institute, St. Petersburg, Russia

Search for other papers by Aleksandr P. Makshtas in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The 4-month drift of Ice Station Weddell (ISW) produced over 2000 h of nearly continuous measurements in the atmospheric surface layer and in the snow and sea ice in the western Weddell Sea. This paper reports simulations, based on these data, of processes in the air, snow, and sea ice at ISW using SNTHERM, a one-dimensional mass and energy balance model. An earlier version of SNTHERM had to be adapted, however, to treat the flooding that often occurs on sea ice in the western Weddell Sea. To treat this layer of slush and brine, SNTHERM holds the brine salinity constant at its initial value of 31.5 psu until 80% of this slush layer freezes. The current version of SNTHERM also incorporates a new parameterization for the roughness length for wind speed, z0, derived from analyses of ISW eddy-covariance data. SNTHERM's simulations are validated with temperature measurements within the ice and snow and with eddy-covariance measurements of the surface momentum and sensible and latent heat fluxes. The simulated turbulent fluxes agree fairly well with the measured fluxes, except the simulated sensible heat flux is biased low by 4–5 W m−2 for both stable and unstable stratification. The simulated temperature profiles in the snow and ice also agree well with the measured temperatures. In particular, allowing seawater to flush the slush layer until it is 80% frozen delays the freezing of this layer such that its behavior mirrors the data.

Corresponding author address: Dr. Edgar L Andreas, U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755-1290. Email: eandreas@crrel.usace.army.mil

Abstract

The 4-month drift of Ice Station Weddell (ISW) produced over 2000 h of nearly continuous measurements in the atmospheric surface layer and in the snow and sea ice in the western Weddell Sea. This paper reports simulations, based on these data, of processes in the air, snow, and sea ice at ISW using SNTHERM, a one-dimensional mass and energy balance model. An earlier version of SNTHERM had to be adapted, however, to treat the flooding that often occurs on sea ice in the western Weddell Sea. To treat this layer of slush and brine, SNTHERM holds the brine salinity constant at its initial value of 31.5 psu until 80% of this slush layer freezes. The current version of SNTHERM also incorporates a new parameterization for the roughness length for wind speed, z0, derived from analyses of ISW eddy-covariance data. SNTHERM's simulations are validated with temperature measurements within the ice and snow and with eddy-covariance measurements of the surface momentum and sensible and latent heat fluxes. The simulated turbulent fluxes agree fairly well with the measured fluxes, except the simulated sensible heat flux is biased low by 4–5 W m−2 for both stable and unstable stratification. The simulated temperature profiles in the snow and ice also agree well with the measured temperatures. In particular, allowing seawater to flush the slush layer until it is 80% frozen delays the freezing of this layer such that its behavior mirrors the data.

Corresponding author address: Dr. Edgar L Andreas, U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755-1290. Email: eandreas@crrel.usace.army.mil

Save
  • Ackley, S. F., and Lytle V. I. , 1992: Sea–ice investigations on Ice Station Weddell #1: II. Ice thermodynamics. Antarct. J. U.S, 27 , 109110.

    • Search Google Scholar
    • Export Citation
  • Ackley, S. F., and Sullivan C. W. , 1994: Physical controls on the development and characteristics of Antarctic sea ice biological communities— A review and synthesis. Deep-Sea Res, 41 , 15831604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albert, M. R., 2002: Effects of snow and firn ventilation on sublimation rates. Ann. Glaciol, 35 , 5256.

  • Albert, M. R., and Hawley R. L. , 2002: Seasonal changes in snow surface roughness characteristics at Summit, Greenland: Implications for snow and firn ventilation. Ann. Glaciol, 35 , 510514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1986: A new method of measuring the snow-surface temperature. Cold Reg. Sci. Technol, 12 , 139156.

  • Andreas, E. L., 1987: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteor, 38 , 159184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1995: Air–ice drag coefficients in the western Weddell Sea: 2. A model based on form drag and drifting snow. J. Geophys. Res, 100 , 48334843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1998: The atmospheric boundary layer over polar marine surfaces. Physics of Ice-Covered Seas, Vol. 2, M. Leppäranta, Ed., Helsinki University Press, 715–773.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2002: Parameterizing scalar transfer over snow and sea ice: A review. J. Hydrometeor, 3 , 417432.

  • Andreas, E. L., and Claffey K. J. , 1995: Air–ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. J. Geophys. Res, 100 , 48214831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and Cash B. A. , 1996: A new formulation for the Bowen ratio over saturated surfaces. J. Appl. Meteor, 35 , 12791289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., Claffey K. J. , and Makshtas A. P. , 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor, 97 , 459486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., Fairall C. W. , Grachev A. A. , Guest P. S. , Horst T. W. , Jordan R. E. , and Persson P. O. G. , 2003: Turbulent transfer coefficients and roughness lengths over sea ice: The SHEBA results. Preprints, Seventh Conf. on Polar Meteorology and Oceanography, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 3.11.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., Jordan R. E. , Guest P. S. , Persson P. O. G. , Grachev A. A. , and Fairall C. W. , 2004a: Roughness lengths over snow. Preprints, 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, JP4.31.

    • Search Google Scholar
    • Export Citation
  • Bader, H-P., and Weilenmann P. , 1992: Modeling temperature distribution, energy and mass flow in a (phase-changing) snowpack. 1. Model and case studies. Cold Reg. Sci. Technol, 20 , 157181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartelt, P. B., and Lehning M. , 2002: A physical SNOWPACK model for avalanche warning services. Part I: Numerical model. Cold Reg. Sci. Technol, 35 , 123145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., Martin E. , Simon V. , Gendre C. , and Coleou C. , 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol, 35 , 333342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claffey, K. J., Andreas E. L. , Makshtas A. P. , and Ivanov B. V. , 1995: In situ measurements of the surface temperature in the western Weddell Sea. Preprints, Fourth Conf. on Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteor. Soc., 86–90.

    • Search Google Scholar
    • Export Citation
  • Crocker, G. B., 1984: A physical model for predicting the thermal conductivity of brine-wetted snow. Cold Reg. Sci. Technol, 10 , 6974.

  • Cunningham, J., and Waddington E. D. , 1993: Air flow and dry deposition of non-sea salt sulfate in polar firn: Paleoclimatic implications. Atmos. Environ, 27A , 29432956.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., and Warren S. G. , 1982: Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res, 18 , 14241434.

  • Drinkwater, M. R., and Lytle V. I. , 1997: ERS 1 radar and field-observed characteristics of autumn freeze-up in the Weddell Sea. J. Geophys. Res, 102 , 1259312608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and Curry J. A. , 1993: An intermediate one-dimensional thermodynamic sea ice model for investigating ice–Atmosphere interactions. J. Geophys. Res, 98 , 1008510109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eicken, H., 1992: Salinity profiles of Antarctic sea ice: Field data and model results. J. Geophys. Res, 97 , 1554515557.

  • Fahrbach, E., Harms S. , Rohardt G. , Schröder M. , and Woodgate R. A. , 2001: Flow of bottom water in the northwestern Weddell Sea. J. Geophys. Res, 106 , 27612778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Rogers D. P. , Edson J. B. , and Young G. S. , 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res, 101 , 37473764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and Brown R. D. , 1996: Variability and climate sensitivity of landfast Arctic sea ice. J. Geophys. Res, 101 , 2576725777.

  • Fritsen, C. H., Lytle V. I. , Ackley S. F. , and Sullivan C. W. , 1994: Autumn bloom of Antarctic pack-ice algae. Science, 266 , 782784.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Geiger, C. A., Hibler W. D. III, and Ackley S. F. , 1998: Large-scale sea ice drift and deformation: Comparison between models and observations in the western Weddell Sea during 1992. J. Geophys. Res, 103 , 2189321913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Lukin V. V. , 1992: Ice Station Weddell #1. Antarct. J. U.S, 27 , 9799.

  • Gordon, A. L., Huber B. A. , Hellmer H. H. , and Ffield A. , 1993: Deep and bottom water of the Weddell Sea's western rim. Science, 262 , 9597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and De Bruin H. A. R. , 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor, 27 , 689704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ISW Group, 1993: Weddell Sea exploration from ice station. Eos, Trans. Amer. Geophys. Union, 74 , 121126.

  • Jordan, R. E., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. Special Rep. 91-16, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Jordan, R. E., Andreas E. L. , and Makshtas A. P. , 1999: Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res, 104 , 77857806.

  • Jordan, R. E., Andreas E. L. , and Makshtas A. P. , 2001: Modeling the surface energy budget and the temperature structure of snow and brine-snow at Ice Station Weddell. Preprints, Sixth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., 129–132.

    • Search Google Scholar
    • Export Citation
  • Jordan, R. E., Andreas E. L. , Fairall C. W. , Grachev A. A. , Guest P. S. , Hanesiak J. M. , Perovich D. K. , and Persson P. O. G. , 2003: Modeling surface exchange and heat transfer for the shallow snow cover at SHEBA. Preprints, Seventh Conf. on Polar Meteorology and Oceanography, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 3.3.

    • Search Google Scholar
    • Export Citation
  • Koh, G., 1989: Physical and optical properties of falling snow. CRREL Rep. 89-16, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., Padman L. , Muench R. D. , and Morison J. H. , 1997: Internal waves and tides in the western Weddell Sea: Observations from Ice Station Weddell. J. Geophys. Res, 102 , 10731089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lytle, V. I., and Ackley S. F. , 1996: Heat flux through sea ice in the western Weddell Sea: Convective and conductive transfer processes. J. Geophys. Res, 101 , 88538868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makshtas, A. P., Timachev V. F. , and Andreas E. L. , 1998: Structure of the lower atmosphere over ice cover of the Weddell Sea. Russ. Meteor. Hydrol, 10 , 6875.

    • Search Google Scholar
    • Export Citation
  • Makshtas, A. P., Andreas E. L. , Svyashchennikov P. N. , and Timachev V. F. , 1999: Accounting for clouds in sea ice models. Atmos. Res, 52 , 77113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maksym, T., and Jeffries M. O. , 2000: A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice. J. Geophys. Res, 105 , 2631326331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E., and Lejeune Y. , 1998: Turbulent fluxes above the snow surface. Ann. Glaciol, 26 , 179183.

  • Maykut, G. A., and Untersteiner N. , 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res, 76 , 15501575.

  • McPhee, M. G., and Martinson D. G. , 1994: Turbulent mixing under drifting pack ice in the Weddell Sea. Science, 263 , 218221.

  • Meredith, M. P., Locarini R. A. , Van Scoy K. A. , Watson A. J. , Heywood K. J. , and King B. A. , 2000: On the sources of Weddell Gyre Antarctic Bottom Water. J. Geophys. Res, 105 , 10931104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, E. M., Bader H-P. , and Weilenmann P. , 1997: Modelling temperature variations in polar snow using DAISY. J. Glaciol, 43 , 180191.

  • Muench, R. D., and Gordon A. L. , 1995: Circulation and transport of water along the western Weddell Sea margin. J. Geophys. Res, 100 , 1850318515.

  • Owen, P. R., 1964: Saltation of uniform grains in air. J. Fluid Mech, 20 , 225242.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor, 9 , 857861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, D., and Zuckerman B. , 1968: Effective thermal conductivity of snow at −88°C, −27°C, and −5°C. SAO Special Rep. 267, Smithsonian Institution Astrophysical Observatory, Cambridge, MA, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res, 93 , 1546715472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., Holmgren J. , König M. , and Morris K. , 1997: The thermal conductivity of seasonal snow. J. Glaciol, 43 , 2641.

  • Sturm, M., Perovich D. K. , and Holmgren J. , 2002: Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. J. Geophys. Res.,107, 8043, doi:10.1029/2000JC000409.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., Uotila J. , Cheng B. , and Launiainen J. , 2002: Surface heat budget over the Weddell Sea: Buoy results and model comparisons. J. Geophys. Res.,107, 3013, doi:10.1029/2000JC000372.

    • Search Google Scholar
    • Export Citation
  • Waddington, E. D., Cunningham J. , and Harder S. L. , 1996: The effects of snow ventilation on chemical concentrations. Chemical Exchange Between the Atmosphere and Polar Snow, E. W. Wolff and R. C. Bales, Eds., Springer-Verlag, 403–451.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys. Space Phys, 20 , 6789.

  • Weppernig, R., Schlosser P. , Khatiwala S. , and Fairbanks R. G. , 1996: Isotope data from Ice Station Weddell: Implications for deep water formation in the Weddell Sea. J. Geophys. Res, 101 , 2572325739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yen, Y. C., 1965: Effective thermal conductivity and water vapor diffusivity of naturally compacted snow. J. Geophys. Res, 70 , 18211825.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 593 236 60
PDF Downloads 223 93 2