• Barson, M., Randall L. , and Bordas V. , 2000: Land cover change in Australia: Results of the collaborative Bureau of Rural Sciences– state agencies' project on remote sensing of agricultural land cover change. Bureau of Rural Sciences Rep. Canberra, ACT, Australia, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture. Mon. Wea. Rev, 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergot, T., and Guedalia D. , 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev, 122 , 12181230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Viterbo P. , and Beljaars A. C. M. , 1998a: Comparison of the land–surface interaction in the ECMWF reanalysis model with the 1987 FIFE data. Mon. Wea. Rev, 126 , 186198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Viterbo P. , Beljaars A. C. M. , Pan H-L. , Hong S-Y. , Goulden M. , and Wofsy S. , 1998b: Evaluation of the land-surface interaction in the ECMWF and NCEP/NCAR reanalyses over grassland (FIFE) and boreal forest (BOREAS). J. Geophys. Res, 103D , 2307923085.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F., van Ulden A. , and Beljaars A. C. M. , 1999: A comparison of ECMWF re-analysis data with fluxes and profiles observed in Cabauw. ECMWF ERA Project Series 8, ECMWF, 50 pp. [Available from European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Brady, N. C., 1990: The Nature and Properties of Soils. 10th ed. Macmillan, 621 pp.

  • Bureau of Rural Sciences, cited 1991: Digital Atlas of Australian Soils. [Available online at http://www.brs.gov.au/data/datasets.].

  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci, 117 , 311314.

  • Clapp, R. B., and Hornberger G. M. , 1978: Empirical equations for some soil hydraulical properties. Water Resour. Res, 14 , 601604.

  • Entekhabi, D., Rodriguez-Iturbe I. , and Castelli F. , 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol, 184 , 317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 1999: An agenda for land surface hydrology research and a call for the second international hydrological decade. Bull. Amer. Meteor. Soc, 80 , 20432058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor, 4 , 552569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture– boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor, 4 , 570583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, D., and Coauthors, 2003: Boreal forest surface parameterization in the ECMWF model—1D test with NOPEX long-term data. J. Appl. Meteor, 42 , 95112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., 1996: Soil moisture: A critical focus for global change studies. Global Planet. Change, 13 , 39.

  • IJpelaar, R. J. M., 2000: Evaluation of modified soil parameterization in the ECMWF land surface scheme. KNMI Tech. Rep. 228, 70 pp.

  • Irannejad, P., and Shao Y. , 1998: Description and validation of the atmosphere–land–surface interaction scheme (ALSIS) with HAPEX and Cabauw data. Global Planet. Change, 19 , 87114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor, 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurkowski, N. P., Stensrud D. J. , and Baldwin M. E. , 2003: Assessment of implementing satellite-derived land cover data in the Eta Model. Wea. Forecasting, 18 , 404416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leese, J., Jackson T. , Pitman A. , and Dirmeyer P. , 2001: GEWEX/ BAHC international workshop on soil moisture monitoring, analysis, and prediction for hydrometeorological and hydroclimatological applications. Bull. Amer. Meteor. Soc, 82 , 14231430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., Raupach M. R. , McVicar T. R. , and Barrett D. J. , 2003: Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sens. Environ, 86 , 118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenzie, N. J., Jacquier D. W. , Ashton L. J. , and Cresswell H. P. , 2000: Estimation of soil properties using the Atlas of Australian Soils. CSIRO Land and Water Tech. Rep. 11/00, Canberra, ACT, Australia, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Mills, G. A., 1995: The Enfield fire—LAPS model results. Proc. Sixth Fire Weather Workshop, Hahndorf, SA, Australia, Bureau of Meteorology, 27–28.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev, 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Northcote, K. H., 1979: A Factual Key for the Recognition of Australian Soils. Rellim Tech. Publications, 123 pp.

  • Pielke R. A. Sr., , 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys, 39 , 151177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. Physics, 1 , 318333.

  • Siriwardena, L., Chiew F. , Richter H. , and Western A. , 2003: Preparation of a climate data set for the Murrumbidgee River catchment. Cooperative Research Centre for Catchment Hydrology Working Doc. 03/1, 57 pp. [Available online at http://www.catchment.crc.org.au.].

    • Search Google Scholar
    • Export Citation
  • Timbal, B., Power S. , Colman R. , Viviand J. , and Lirola S. , 2002: Does soil moisture influence climate variability and predictability over Australia? J. Climate, 15 , 12301238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J, 44 , 892898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., 1996: The representation of surface processes in general circulation models. Ph.D. thesis, University of Lisbon, 201 pp. [Available from ECMWF, Shinfield Park, Reading, Berkshire RG28AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8 , 27162748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Betts A. K. , 1999: Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J. Geophys. Res, 104D , 2780327810.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., Beljaars A. C. M. , Mahfouf J-F. , and Teixeira J. , 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc, 125 , 24012426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and Avissar R. , 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc, 82 , 269281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Western, A. W., Richter H. , Chiew F. H. S. , Young R. I. , Mills G. , Grayson R. B. , Manton M. , and McMahon T. A. , 2002: Testing the Australian Bureau of Meteorology's land surface simulations using soil moisture observations from the Murrumbidgee catchment. Preprints, Hydrology and Water Resources Symp. 2002, Melbourne, VIC, Australia, IE Aust., CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Weymouth, G. T., and Le Marshall J. F. , 1999: An operational system to estimate global solar exposure over the Australian region from satellite observations. I. Method and the initial climatology. Aust. Meteor. Mag, 48 , 181195.

    • Search Google Scholar
    • Export Citation
  • Weymouth, G. T., and Le Marshall J. F. , 2001: Estimation of daily surface solar exposure using GMS-5 stretched-VISSR observations: The system and basic results. Aust. Meteor. Mag, 50 , 263278.

    • Search Google Scholar
    • Export Citation
  • White, R. E., 1997: Principles and Practice of Soil Science: The Soil as a Natural Resource. 3d ed. Blackwell Science, 348 pp.

  • Wilson, M. F., and Henderson-Sellers A. , 1985: A global archive of land cover and soil data sets for use in general climate models. J. Climatol, 5 , 119143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change, 19 , 115135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1992: Scientific plan for the GEWEX Continental Scale International Project (GCIP). WCRP-67, WMO Tech. Doc. 61, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., and Frederiksen C. S. , 2003: Local and nonlocal impacts of soil moisture initialization on AGCM seasonal forecasts: A model sensitivity study. J. Climate, 16 , 21172137.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 42 2
PDF Downloads 52 17 0

The Effect of Soil and Vegetation Parameters in the ECMWF Land Surface Scheme

View More View Less
  • 1 Bureau of Meteorology Research Centre, and Cooperative Research Centre for Catchment Hydrology, Melbourne, Victoria, Australia
  • | 2 Department of Civil and Environmental Engineering, University of Melbourne, and Cooperative Research Centre for Catchment Hydrology, Melbourne, Victoria, Australia
Restricted access

Abstract

Numerical Weather Prediction (NWP) and climate models are sensitive to evapotranspiration at the land surface. This sensitivity requires the prediction of realistic surface moisture and heat fluxes by land surface models that provide the lower boundary condition for the atmospheric models. This paper compares simulations of a stand-alone version of the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface scheme, or the Viterbo and Beljaars scheme (VB95), with various soil and vegetation parameter sets against soil moisture observations across the Murrumbidgee River catchment in southeast Australia. The study is, in part, motivated by the adoption of VB95 as the operational land surface scheme by the Australian Bureau of Meteorology in 1999.

VB95 can model the temporal fluctuations in soil moisture, and therefore the moisture fluxes, fairly realistically. The monthly model latent heat flux is also fairly insensitive to soil or vegetation parameters. The VB95 soil moisture is sensitive to the soil and, to a lesser degree, the vegetation parameters. The model exhibits a significant (generally wet) bias in the absolute soil moisture that varies spatially. The use of the best Australia-wide available soils and vegetation information did not improve VB95 simulations consistently, compared with the original model parameters. Comparisons of model and observed soil moistures revealed that more realistic soil parameters are needed to reduce the model soil moisture bias. Given currently available continent-wide soils parameters, any initialization of soil moisture with observed values would likely result in significant flux errors. The soil moisture bias could be largely eliminated by using soil parameters that were derived directly from the actual soil moisture observations. Such parameters, however, are only available at very few point locations.

Corresponding author address: Harald Richter, Bureau of Meteorology Training Centre, P.O. Box 1289K, Melbourne, Victoria 3001, Australia. Email: h.richter@bom.gov.au

Abstract

Numerical Weather Prediction (NWP) and climate models are sensitive to evapotranspiration at the land surface. This sensitivity requires the prediction of realistic surface moisture and heat fluxes by land surface models that provide the lower boundary condition for the atmospheric models. This paper compares simulations of a stand-alone version of the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface scheme, or the Viterbo and Beljaars scheme (VB95), with various soil and vegetation parameter sets against soil moisture observations across the Murrumbidgee River catchment in southeast Australia. The study is, in part, motivated by the adoption of VB95 as the operational land surface scheme by the Australian Bureau of Meteorology in 1999.

VB95 can model the temporal fluctuations in soil moisture, and therefore the moisture fluxes, fairly realistically. The monthly model latent heat flux is also fairly insensitive to soil or vegetation parameters. The VB95 soil moisture is sensitive to the soil and, to a lesser degree, the vegetation parameters. The model exhibits a significant (generally wet) bias in the absolute soil moisture that varies spatially. The use of the best Australia-wide available soils and vegetation information did not improve VB95 simulations consistently, compared with the original model parameters. Comparisons of model and observed soil moistures revealed that more realistic soil parameters are needed to reduce the model soil moisture bias. Given currently available continent-wide soils parameters, any initialization of soil moisture with observed values would likely result in significant flux errors. The soil moisture bias could be largely eliminated by using soil parameters that were derived directly from the actual soil moisture observations. Such parameters, however, are only available at very few point locations.

Corresponding author address: Harald Richter, Bureau of Meteorology Training Centre, P.O. Box 1289K, Melbourne, Victoria 3001, Australia. Email: h.richter@bom.gov.au

Save