• Boville, B. A., and Gent P. R. , 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS Climate Model. NASA Tech. Memo 83961, Goddard Space Flight Center, Greenbelt, MD, 57 pp.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., 1996: The effect of the cumulus convection on the climate of the COLA general circulation model. COLA Tech. Rep. 27, 58 pp. [Available from the Center for Ocean–Land– Atmosphere Studies, 4041 Power Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2001: Climate drift in a coupled land–atmosphere model. J. Hydrometeor, 2 , 89100.

  • Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. J. Hydrometeor, 4 , 599610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Zeng F. J. , 1999a: An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78, 25 pp. [Available from the Center for Ocean–Land– Atmosphere Studies, 4041 Powder Mill road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Zeng F. J. , 1999b: Precipitation infiltration in the Simplified SiB land surface scheme. J. Meteor. Soc. Japan, 77 , 291303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Tan L. , 2001: A multi-decadal global and land-surface data set of state variables and fluxes. COLA Tech. Rep. 102, 43 pp. [Available from the Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Zhao M. , 2003: Diagnosis of coupled land–atmosphere model feedback using surface flux replacement. COLA Tech. Rep. 153, 57 pp. [Available from the Center for Ocean–Land– Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The Global Soil Wetness Project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc, 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Fennessy M. J. , and Marx L. , 2003: Low skill in dynamical prediction of boreal summer climate: Grounds for looking beyond sea surface temperature. J. Climate, 16 , 9951002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., Su X. , Kanamitsu M. , and Schemm J. , 2000: The comparison of two merged rain gauge–satellite precipitation datasets. Bull. Amer. Meteor. Soc, 81 , 26312644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and Ropelewski C. F. , 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5 , 577593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, Davies R. , Randall D. A. , and Corsetti T. G. , 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res, 92 , 10091016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Janowiak J. E. , and Yao Y-P. , 1996: A Gridded Hourly Precipitation Data Base for the United States. NCEP/Climate Prediction Center Atlas 1, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Leetmaa A. , Xue Y. , and Barnston A. , 2000: Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J. Climate, 13 , 39944017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Meira Filho L. G. , Callander B. A. , Harris N. , Kattenberg A. , and Maskell K. , Eds.,. 1996: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 879 pp.

    • Search Google Scholar
    • Export Citation
  • Ji, M., Leetmaa A. , and Kousky V. E. , 1996: Coupled model forecasts of ENSO during the 1980s and 1990s at the National Meteorological Center. J. Climate, 9 , 31053120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kiehl, J. T., Hack J. J. , Bonan G. B. , Boville B. A. , Williamson D. L. , and Rasch P. J. , 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., and Coauthors, 1997: Formulation. Vol. 1, The COLA atmosphere–biosphere general circulation model, COLA Tech. Rep. 51, 46 pp. [Available from the Center for Ocean–Land– Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Shukla J. , Huang B. , Zhu Z. , and Schneider E. K. , 1997: Multiseasonal predictions with a coupled tropical ocean– global atmosphere system. Mon. Wea. Rev, 125 , 789808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor, 4 , 408423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Dirmeyer P. A. , Hahmann A. N. , Ijpelaar R. , Tyahla L. , Cox P. , and Suarez M. J. , 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor, 3 , 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and Hansen J. E. , 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci, 31 , 118133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and Stouffer R. J. , 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1 , 841866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meeson, B. W., Corprew F. E. , McManus J. M. P. , Myers D. M. , Closs J. W. , Sun K. J. , Sunday D. J. , and Sellers P. J. , 1995: ISLSCP Initiative I—Global data sets for land–atmosphere models, 1987–1988. Vols. 1–5, NASA, CD-ROM, disks USA_NASA_GDAAC_ISLSCP_001-USA_NASA_GDAAC_ISLSCP_005.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and Suarez M. J. , 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev, 120 , 9781002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., Brankovic C. , and Richardson D. S. , 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc, 126 , 20132033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., Kumar A. , Barnston A. G. , and Goddard L. , 2000: Simulation skills of the SST-forced global climate variability of the NCEP– MRF9 and the Scripps–MPI ECHAM3 models. J. Climate, 13 , 36573679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., Ginoux P. , Torres O. , Nicholson S. E. , and Gill T. E. , 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys.,40, 1002, doi:10.1029/2000RG000095.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., Janowiak J. E. , and Halpert M. F. , 1985: The analysis and display of real time surface climate data. Mon. Wea. Rev, 113 , 11011107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 2002: The causes of differences between equatorial Pacific SST simulations of two coupled ocean–atmosphere general circulation models. J. Climate, 15 , 449469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev, 108 , 12791292.

  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc, 81 , 25932606.

  • Singh, S. V., Kripalani R. H. , and Sikka D. R. , 1992: Interannual variability of the Madden–Julian oscillations in Indian summer monsoon rainfall. J. Climate, 5 , 973978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackhouse P. W. Jr., , Gupta S. K. , Cox S. J. , Chiacchio M. , and Mikovitz J. C. , 2000: The SRB Project Release 2 Data Set: An Update. GEWEX News, Vol. 10, No. 3, International GEWEX Project Office, Silver Spring, MD, 4.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and Molteni F. , 2004: Circulation regimes and SST forcing: Results from large GCM ensembles. J. Climate, 17 , 16411656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large scale flow in a general circulation model. Beitr. Phys. Atmos, 57 , 216239.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Branstator G. W. , Karoly D. , Kumar A. , Lau N-C. , and Ropelewski C. , 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res, 103 , 1429114324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Fekete B. M. , Meybeck M. , and Lammers R. B. , 2000: Geomorphometric attributes of a global system of rivers at 30-minute spatial resolution. J. Hydrol, 237 , 1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Ting M. , 2000: Covariabilities of winter U.S. precipitation and Pacific sea surface temperatures. J. Climate, 13 , 37113719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, S. R., and Willmott C. J. , 1998: South American precipitation: 1960–1990 gridded monthly time series (version 1.02). Center for Climatic Research, Dept. of Geography, University of Delaware, 87 pp.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and Olson J. G. , 1994: Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon. Wea. Rev, 122 , 15941610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc, 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Sellers P. J. , Kinter J. L. , and Shukla J. , 1991: A simplified biosphere model for global climate series. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Zeng F. J. , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties—A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and Frederiksen C. S. , 2003: Local and nonlocal impacts of soil moisture initialization on AGCM seasonal forecasts: A model sensitivity study. J. Climate, 16 , 21172137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Dirmeyer P. A. , 2004: Pattern and trend analysis of temperature in a set of seasonal ensemble simulations. Geophys. Res. Lett, 31 .L11202, doi:10.1029/2003GL019298.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 21 4
PDF Downloads 23 9 2

Flux Replacement as a Method to Diagnose Coupled Land–Atmosphere Model Feedback

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
Restricted access

Abstract

The potential role of the land surface state in improving predictions of seasonal climate is investigated with a coupled land–atmosphere climate model. Climate simulations for 18 boreal-summer seasons (1982–99) have been conducted with specified observed sea surface temperature (SST). The impact on prediction skill of the initial land surface state (interannually varying versus climatological soil wetness) and the effect of errors in downward surface fluxes (precipitation and longwave/shortwave radiation) over land are investigated with a number of parallel experiments. Flux errors are addressed by replacing the downward fluxes with observed values in various combinations to ascertain the separate roles of water and energy flux errors on land surface state variables, upward water and energy fluxes from the land surface, and the important climate variables of precipitation and near-surface air temperature.

Large systematic errors are found in the model, which are only mildly alleviated by the specification of realistic initial soil wetness. The model shows little skill in simulating seasonal anomalies of precipitation, but it does have skill in simulating temperature variations. Replacement of the downward surface fluxes has a clear positive impact on systematic errors, suggesting that the land–atmosphere feedback is helping to exacerbate climate drift. Improvement in the simulation of year-to-year variations in climate is even more evident. With flux replacement, the climate model simulates temperature anomalies with considerable skill over nearly all land areas, and a large fraction of the globe shows significant skill in the simulation of precipitation anomalies. This suggests that the land surface can communicate climate anomalies back to the atmosphere, given proper meteorological forcing. Flux substitution appears to have the largest benefit to improving precipitation skill over the Northern Hemisphere midlatitudes, whereas use of realistic land surface initial conditions improves skill to significant levels over regions of the Southern Hemisphere. Correlations between sets of integrations show that the model has a robust and systematic global response to SST anomalies.

Corresponding author address: Dr. Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705-3106. Email: dirmeyer@cola.iges.org

Abstract

The potential role of the land surface state in improving predictions of seasonal climate is investigated with a coupled land–atmosphere climate model. Climate simulations for 18 boreal-summer seasons (1982–99) have been conducted with specified observed sea surface temperature (SST). The impact on prediction skill of the initial land surface state (interannually varying versus climatological soil wetness) and the effect of errors in downward surface fluxes (precipitation and longwave/shortwave radiation) over land are investigated with a number of parallel experiments. Flux errors are addressed by replacing the downward fluxes with observed values in various combinations to ascertain the separate roles of water and energy flux errors on land surface state variables, upward water and energy fluxes from the land surface, and the important climate variables of precipitation and near-surface air temperature.

Large systematic errors are found in the model, which are only mildly alleviated by the specification of realistic initial soil wetness. The model shows little skill in simulating seasonal anomalies of precipitation, but it does have skill in simulating temperature variations. Replacement of the downward surface fluxes has a clear positive impact on systematic errors, suggesting that the land–atmosphere feedback is helping to exacerbate climate drift. Improvement in the simulation of year-to-year variations in climate is even more evident. With flux replacement, the climate model simulates temperature anomalies with considerable skill over nearly all land areas, and a large fraction of the globe shows significant skill in the simulation of precipitation anomalies. This suggests that the land surface can communicate climate anomalies back to the atmosphere, given proper meteorological forcing. Flux substitution appears to have the largest benefit to improving precipitation skill over the Northern Hemisphere midlatitudes, whereas use of realistic land surface initial conditions improves skill to significant levels over regions of the Southern Hemisphere. Correlations between sets of integrations show that the model has a robust and systematic global response to SST anomalies.

Corresponding author address: Dr. Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705-3106. Email: dirmeyer@cola.iges.org

Save