• Abakumova, G. M., Feigelson E. M. , Russak V. , and Stadnik V. V. , 1996: Evaluation of long-term changes in radiation, cloudiness, and surface temperature on the territory of the former Soviet Union. J. Climate, 9 , 13191327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, W. M., 1984: Palmer Drought Severity Index: Limitations and assumptions. J. Climate Appl. Meteor, 23 , 11001109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and Parlange M. B. , 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396 , 30.

  • Chattopadhyay, N., and Hulme M. , 1997: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteor, 87 , 5573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., Xie P. , Janowiak J. E. , and Arkin P. A. , 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor, 3 , 249266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., and Cook E. R. , 1998: The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys. Res. Lett, 25 , 45294532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., Meko D. M. , Stahle D. W. , and Cleaveland M. K. , 1999: Drought reconstructions for the continental United States. J. Climate, 12 , 11451162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis: The IPCC WG1 Third Assessment Report, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., and Wigley T. M. L. , 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett, 27 , 12831286.

  • Dai, A. G., and Trenberth K. E. , 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor, 3 , 660687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., Fung I. Y. , and Del Genio A. D. , 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10 , 29432962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., Trenberth K. E. , and Karl T. R. , 1998: Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett, 25 , 33673370.

  • Dai, A. G., Wigley T. M. L. , Boville B. A. , Kiehl J. T. , and Buja L. E. , 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J. Climate, 14 , 485519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., Lamb P. J. , Trenberth K. E. , Hulme M. , Jones P. D. , and Xie P. , 2004: The recent Sahel drought is real. J. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Dai, Y. J., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc, 84 , 10131023.

  • Domonkos, P., Szalai S. , and Zoboki J. , 2001: Analysis of drought severity using PDSI and SPI indices. Idoejaras, 105 , 93107.

  • dos Santos, R. M. N., and Pereira A. R. , 1999: PALMER drought severity index for western Sao Paulo state, Brazil. Rev. Bras. Agrometeor, 7 , 139145.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001: Observed climate variability and change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 99–181.

    • Search Google Scholar
    • Export Citation
  • Fye, F. K., Stahle D. W. , and Cook E. R. , 2003: Paleoclimatic analogs to twentieth-century moisture regimes across the United States. Bull. Amer. Meteor. Soc, 84 , 901909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golubev, V. S., and Coauthors, 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett, 28 , 26652668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, Knight R. W. , Karl T. R. , Easterling D. R. , Sun B. , and Lawrimore J. H. , 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor, 5 , 6485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., Wallis J. R. , and Hosking J. R. M. , 1992: Spatial comparability of the Palmer drought severity index. Water Resour. Bull, 28 , 11111119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim R. R. Jr., , 2000: Drought indices: A review. Drought: A Global Assessment, D. A. Wilhite, Ed., Routledge, 159–167.

  • Heim R. R. Jr., , 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc, 83 , 11491165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7 , 822833.

  • Jones, P. D., and Moberg A. , 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 1986: Sensitivity of the Palmer Drought Severity Index and Palmer's Z-index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor, 25 , 7786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Koscielny A. J. , 1982: Drought in the United States: 1895– 1981. J. Climatol, 2 , 313329.

  • Karl, T. R., and Knight R. W. , 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc, 79 , 231241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Trenberth K. E. , 2003: Modern global climate change. Science, 302 , 17191723.

  • Keyantash, J., and Dracup J. A. , 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc, 83 , 11671180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and Diaz H. F. , 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2 , 10691090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., 2002: Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett.,29, 1421, doi:10.1029/2002GL014910.

    • Search Google Scholar
    • Export Citation
  • Liu, B., Henderson M. , Xu M. , and Gong W. , 2004: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and Saunders M. A. , 2002: A drought climatology for Europe. Int. J. Climatol, 22 , 15711592.

  • Milly, P. C. D., and Dunne K. A. , 2001: Trends in evaporation and surface cooling in the Mississippi River basin. Geophys. Res. Lett, 28 , 12191222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., and Coauthors, 2001: Detection of climate change and attribution of causes. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 695–738.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., and Dai A. , 2004: The spatial and temporal structure of ENSO nonlinearity. J. Climate, 17 , 30263036.

  • Nicholls, N., 2004: The changing nature of Australian droughts. Climatic Change, 63 , 323336.

  • Ntale, H. K., and Gan T. Y. , 2003: Drought indices and their application to East Africa. Int. J. Climatol, 23 , 13351357.

  • Palmer, W. C., 1965: Meteorological drought. Research Paper 45, U.S. Dept. of Commerce, 58 pp.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, A193 , 120145.

  • Peterson, T. C., Golubev V. S. , and Groisman P. Ya , 1995: Evaporation losing its strength. Nature, 377 , 687688.

  • Philip, J. R., 1957: Evaporation, and moisture and heat fields in the soil. J. Meteor, 14 , 354366.

  • Robock, A., and Coauthors, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc, 81 , 12811299.

  • Roderick, M. L., and Farquhar G. D. , 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298 , 14101411.

  • Ropelewski, C. F., and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev, 115 , 16061626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev, 38 , 5594.

  • Trenberth, K. E., and Hoar T. J. , 1996: The 1990–1995 El Nino Southern Oscillation event: Longest on record. Geophys. Res. Lett, 23 , 5760.

  • Trenberth, K. E., and Caron J. M. , 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13 , 43584365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc, 84 , 12051217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Overpeck J. T. , and Solomon S. , 2004: Exploring drought and its implications for the future. Eos, Trans. Amer. Geophys. Union, 85 , 27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., and Yeserkepova I. B. , 1991: Soil moisture: Empirical data and model results. J. Climate, 4 , 6679.

  • Webb, R. S., Rosenzweig C. E. , and Levine E. R. , 1993: Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities. Global Biogeochem. Cycles, 7 , 97108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Droughts: A Global Assessment, D. A. Wilhite, Ed., Routledge, 3–18.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Ye B. , and Kane D. , 2004: Streamflow hydrology changes over Siberian Yenisei River basin. J. Hydrol, 296 , 5980.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4038 1680 117
PDF Downloads 2439 1259 72

A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming

View More View Less
  • 1 National Center for Atmospheric Research, * Boulder, Colorado
Restricted access

Abstract

A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.5° grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated (r = 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely (r = 0.6 to 0.8) with streamflow for seven of world's largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature and an El Niño– Southern Oscillation (ENSO)-induced mode of mostly interannual variations as the two leading patterns. The global very dry areas, defined as PDSI < −3.0, have more than doubled since the 1970s, with a large jump in the early 1980s due to an ENSO-induced precipitation decrease and a subsequent expansion primarily due to surface warming, while global very wet areas (PDSI > +3.0) declined slightly during the 1980s. Together, the global land areas in either very dry or very wet conditions have increased from ∼20% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.

Corresponding author address: A. Dai, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: adai@ucar.edu

Abstract

A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.5° grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated (r = 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely (r = 0.6 to 0.8) with streamflow for seven of world's largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature and an El Niño– Southern Oscillation (ENSO)-induced mode of mostly interannual variations as the two leading patterns. The global very dry areas, defined as PDSI < −3.0, have more than doubled since the 1970s, with a large jump in the early 1980s due to an ENSO-induced precipitation decrease and a subsequent expansion primarily due to surface warming, while global very wet areas (PDSI > +3.0) declined slightly during the 1980s. Together, the global land areas in either very dry or very wet conditions have increased from ∼20% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.

Corresponding author address: A. Dai, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: adai@ucar.edu

Save