• Basist, A., Grody N. C. , Peterson T. C. , and Williams C. N. , 1998: Using the Special Sensor Microwave Imager to monitor land surface temperatures, wetness, and snow cover. J. Appl. Meteor, 37 , 888911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C., Viterbo P. , Miler M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev, 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A. A., Famiglietti J. S. , Walker J. , and Houser P. R. , 2003: Impact of bias correction to reanalysis products on simulation of North American soil moisture and hydrologic fluxes. J. Geophys. Res.,108, 4490, doi:10.1029/2002JD003334.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., Chepurin G. , Cao X. , and Geise B. , 2000: A simple ocean data assimilation analysis of the global upper ocean 1950– 95. Part I: Methodology. J. Phys. Oceanogr, 30 , 294309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and Rosati A. , 1989: A global oceanic data assimilation system. J. Phys. Oceanogr, 19 , 13331347.

  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. J. Hydrometeor, 4 , 599610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Zeng F. J. , 1999: An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78, 25 pp. [Available from the Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Tan L. , 2001: A multi-decadal global land-surface data set of state variables and fluxes. COLA Tech. Rep. 102, 43 pp. [Available from the Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The Global Soil Wetness Project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc, 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., Chauvin F. , and Broqua H. , 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14 , 23812403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entin, J. K., Robock A. , Vinnikov K. Ya , Zabelin V. , Liu S. , and Namkhai A. , 1999: Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan, 77 , 183198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and Van den Dool H. , 2004: The CPC global monthly soil moisture data set at ½ degree resolution for 1948–present. J. Geophys. Res.,109, D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Feddes, R. A., and Coauthors, 2001: Modeling root water uptake in hydrological and climate models. Bull. Amer. Meteor. Soc, 82 , 27972809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, R. K., Kallberg P. , Uppala S. , Hernandez A. , Nomura A. , and Serrano E. , 1997: ERA Description. ERA Tech. Rep. 1, ECMWF, Reading, United Kingdom, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Van den Dool H. M. , and Georgakakos K. P. , 1996: Analysis of model calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9 , 13501362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International GEWEX Project Office, 2002: The Second Global Soil Wetness Project science and implementation plan. IGPO Publication Series 37, 69 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc, 83 , 16311648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Milly P. C. D. , 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 1988: A comparison of operational global analyses from the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Meteorological Center (NMC). Tellus, 40A , 272284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the circulation, I. The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev, 97 , 739774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mintz, Y., and Walker G. K. , 1993: Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature. J. Appl. Meteor, 32 , 13051334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res.,109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • National Water and Climate Center, cited 2004: Soil Climate Analysis Network. [Available online at http://www.wcc.nrcs.usda.gov/scan/.].

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor, 38 , 185202.

  • Roads, J., and Betts A. , 2000: NCEP–NCAR and ECMWF reanalysis surface water and energy budgets for the Mississippi River basin. J. Hydrometeor, 1 , 8894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Ya , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc, 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., Houser P. , Jambor U. , Gottschalck J. , Meng J. , and Arsenault K. , 2002: Status and availability of results from NASA's Global Land Data Assimilation System. Eos, Trans. Amer. Geophys. Union,83 (Spring Meeting Suppl.), Abstract B41A-04.

    • Search Google Scholar
    • Export Citation
  • Schemm, J., Schubert S. , Terry J. , and Bloom S. , 1992: Estimates of monthly mean soil moisture for 1979–1989. NASA Tech. Memo. 104571, Goddard Space Flight Center, Greenbelt, MD, 260 pp.

    • Search Google Scholar
    • Export Citation
  • Schnur, R., and Lettenmaier D. P. , 1997: A global gridded data set of soil moisture for use in general circulation models. Proc. 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 371– 372.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Gibson J. K. , 2000: The ERA-40 Project Plan. ERA-40 Project Report Series 1, 63 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/ERA40_PRS_1.pdf.].

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev, 38 , 5589.

  • van den Hurk, B. J. J. M., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 42 pp. [Available from ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., and Coauthors, 2002: Overview of the European Land Data Assimilation (ELDAS) project. Eos, Trans. Amer. Geophys. Union,83 (Fall Meeting Suppl.), Abstract H62D-0886.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Lemoine G. , and Rott H. , 1999: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ, 70 , 191207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Matsuura K. , cited 2001: Terrestrial water budget data archive: Monthly time series (1950–1999). [Available online at http://climate.geog.udel.edu/∼climate/html_pages/README.wb_ts2.html.].

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., Rowe C. M. , and Mintz Y. , 1985: Climatology of the terrestrial seasonal water cycle. Int. J. Climatol, 5 , 589606.

  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc, 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Sellers P. J. , Kinter J. L. , and Shukla J. , 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Zeng F. J. , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties—A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and Frederiksen C. S. , 2003: Local and nonlocal impacts of soil moisture initialization on AGCM seasonal forecasts: A model sensitivity study. J. Climate, 16 , 21172137.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 91 12
PDF Downloads 90 41 4

Comparison, Validation, and Transferability of Eight Multiyear Global Soil Wetness Products

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
Restricted access

Abstract

The characteristics of eight global soil wetness products, three produced by land surface model calculations, three from coupled land–atmosphere model reanalyses, and two from microwave remote sensing estimates, have been examined. The goal of this study is to determine whether there exists an optimal dataset for the initialization of the land surface component of global weather and climate forecast models. Their abilities to simulate the phasing of the annual cycle and to accurately represent interannual variability in soil wetness by comparing to available in situ measurements are validated. Because soil wetness climatologies vary greatly among land surface models, and models have different operating ranges for soil wetness (i.e., very different mean values, variances, and hydrologically critical thresholds such as the point where evaporation occurs at the potential rate or where surface runoff begins), one cannot simply take the soil wetness field from one product and apply it to an arbitrary land surface scheme (LSS) as an initial condition without experiencing some sort of initialization shock. A means of renormalizing soil wetness is proposed based on the local statistical properties of this field in the source and target models, to allow a large number of climate models to apply the same initialization in multimodel studies or intercomparisons. As a test of feasibility, renormalization among the model-derived products is applied to see how it alters the character of the soil wetness climatologies.

Corresponding author address: Dr. Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705-3106. Email: dirmeyer@cola.iges.org

Abstract

The characteristics of eight global soil wetness products, three produced by land surface model calculations, three from coupled land–atmosphere model reanalyses, and two from microwave remote sensing estimates, have been examined. The goal of this study is to determine whether there exists an optimal dataset for the initialization of the land surface component of global weather and climate forecast models. Their abilities to simulate the phasing of the annual cycle and to accurately represent interannual variability in soil wetness by comparing to available in situ measurements are validated. Because soil wetness climatologies vary greatly among land surface models, and models have different operating ranges for soil wetness (i.e., very different mean values, variances, and hydrologically critical thresholds such as the point where evaporation occurs at the potential rate or where surface runoff begins), one cannot simply take the soil wetness field from one product and apply it to an arbitrary land surface scheme (LSS) as an initial condition without experiencing some sort of initialization shock. A means of renormalizing soil wetness is proposed based on the local statistical properties of this field in the source and target models, to allow a large number of climate models to apply the same initialization in multimodel studies or intercomparisons. As a test of feasibility, renormalization among the model-derived products is applied to see how it alters the character of the soil wetness climatologies.

Corresponding author address: Dr. Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705-3106. Email: dirmeyer@cola.iges.org

Save