• Avissar, R., and Pielke R. , 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev, 117 , 21132136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and Shukla J. , 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12 , 31173132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitner, D., Carroll T. , Cline D. , and Romanov P. , 2002: An assessment of the differences between three satellite snow cover mapping techniques. Hydrol. Processes, 16 , 37233733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojariu, R., and Gimeno L. , 2003: The role of snow cover fluctuations in multiannual NAO persistence. Geophys. Res. Lett, 30 .1156, doi:10.1029/2002GL015651.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor, 38 , 726740.

  • Brown, R. D., Brasnett B. , and Robinson D. A. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM validation. Atmos.–Ocean, 41 , 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T., Cline D. , Fall G. , Nilsson A. , Li L. , and Rost A. , 2001: NOHRSC operations and the simulation of snow cover properties for the coterminous U.S. Proc. 69th Annual Western Snow Conference, Sun Valley, ID, Western Snow Conference, 1–14.

    • Search Google Scholar
    • Export Citation
  • Chen, C-T., Nijssen B. , Guo J. , Tsang L. , Wood A. W. , Hwang J-N. , and Lettenmaier D. P. , 2001: Passive microwave remote sensing of snow constrained by hydrological simulations. IEEE Trans. Geosci. Remote Sens, 39 , 17441756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Entekhabi D. , 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett, 26 , 345348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Entekhabi D. , 2001: The influence of snow cover on Northern Hemisphere climate variability. Atmos.–Ocean, 39 , 3553.

  • Cosgrove, B. A., and Houser P. R. , 2002: The effect of errors in snow assimilation on land surface modeling. Preprints, 16th Conf. on Hydrology, Orlando, FL, Amer. Meteor. Soc., J136–J137.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 1994: Snow and snowmelt. Physical Hydrology, Prentice Hall, 159–209.

  • Foster, J., and Coauthors, 1996: Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. J. Climate, 9 , 409426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., Entekhabi D. , and Cohen J. , 2002: A large-ensemble model study of the wintertime AO/NAO and the role of interannual snow perturbations. J. Climate, 15 , 34883499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., Entekhabi D. , and Cohen J. , 2003: Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophys. Res. Lett.,30, 1848, doi:10.1029/2003GL017749.

    • Search Google Scholar
    • Export Citation
  • Guo, J., Tsang L. , Josberger E. G. , Wood A. W. , Hwang J-N. , and Lettenmaier D. P. , 2003: Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements. IEEE Trans. Geosci. Remote Sens, 41 , 612621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , Salomonson V. V. , DiGirolamo N. E. , and Bayr K. J. , 2002: MODIS snow-cover products. Remote Sens. Environ, 83 , 181194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartman, R. K., Rost A. A. , and Anderson D. M. , 1995: Operational processing of multi-source snow data. Proc. Western Snow Conf., Sparks, NV, Western Snow Conference, 147–151.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and Coauthors, 1998: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens, 36 , 12281249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res, 97 , 26972715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Pielke R. A. Sr., and Greene E. M. , 1999: Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res, 104 , 1955919567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Rhoads J. D. , Dubayah R. O. , and Lettenmaier D. P. , 2003: Evaluation of the snow-covered area data product from MODIS. Hydrol. Processes, 17 , 5971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfaendtner, J., Bloom S. , Lamich D. , Seablom M. , Sienkiewicz M. , Stobie J. , and da Silva A. , 1995: Documentation of the Goddard Earth Observing System (GEOS) Data Assimilation System— Version 1. NASA Tech. Memo. 104606, Vol. 4, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Ramsay, B. H., 1998: The Interactive Multisensor Snow and Ice Mapping System. Hydrol. Processes, 12 , 15371546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc, 85 , 381394.

  • Saito, K., and Cohen J. , 2003: The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett, 30 .1302, doi:10.1029/ 2002GL016341.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., Qian B. , and Lloyd-Hughes B. , 2003: Summer snow extent heralding of the winter North Atlantic Oscillation. Geophys. Res. Lett, 30 .1378, doi:10.1029/2002GL016832.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. , and Dalcher A. , 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci, 43 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., Houser P. R. , and Reichle R. H. , 2003: New remote sensing technologies require advances in hydrologic data assimilation. Eos, Trans. Amer. Geophys. Union, 84 , 545,. 551.

    • Search Google Scholar
    • Export Citation
  • Wilson, L. L., Tsang L. , Hwang J-N. , and Chen C-T. , 1999: Mapping snow water equivalent by combining a spatially distributed snow hydrology model with passive microwave remote-sensing data. IEEE Trans. Geosci. Remote Sens, 37 , 690704.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 197 9
PDF Downloads 253 124 4

Updating a Land Surface Model with MODIS-Derived Snow Cover

View More View Less
  • 1 Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

A simple scheme for updating snow-water storage in a land surface model using snow cover observations is presented. The scheme makes use of snow cover observations retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites. Simulated snow-water equivalent is adjusted when and where the model and MODIS observation differ, following an internal accounting of the observation quality, by either removing the simulated snow or adding a thin layer. The scheme is tested in a 101-day global simulation of the Mosaic land surface model driven by the NASA/NOAA Global Land Data Assimilation System. Output from this simulation is compared to that from a control (not updated) simulation, and both are assessed using a conventional snow cover product and data from ground-based observation networks over the continental United States. In general, output from the updated simulation displays more accurate snow coverage and compares more favorably with in situ snow time series. Both the control and updated simulations have serious deficiencies on occasion and in certain areas when and where the precipitation and/or surface air temperature forcing inputs are unrealistic, particularly in mountainous regions. Suggestions for developing a more sophisticated updating scheme are presented.

Corresponding author address: Matthew Rodell, Hydrological Sciences Branch, Code 974.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: Matthew.Rodell@nasa.gov

Abstract

A simple scheme for updating snow-water storage in a land surface model using snow cover observations is presented. The scheme makes use of snow cover observations retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites. Simulated snow-water equivalent is adjusted when and where the model and MODIS observation differ, following an internal accounting of the observation quality, by either removing the simulated snow or adding a thin layer. The scheme is tested in a 101-day global simulation of the Mosaic land surface model driven by the NASA/NOAA Global Land Data Assimilation System. Output from this simulation is compared to that from a control (not updated) simulation, and both are assessed using a conventional snow cover product and data from ground-based observation networks over the continental United States. In general, output from the updated simulation displays more accurate snow coverage and compares more favorably with in situ snow time series. Both the control and updated simulations have serious deficiencies on occasion and in certain areas when and where the precipitation and/or surface air temperature forcing inputs are unrealistic, particularly in mountainous regions. Suggestions for developing a more sophisticated updating scheme are presented.

Corresponding author address: Matthew Rodell, Hydrological Sciences Branch, Code 974.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: Matthew.Rodell@nasa.gov

Save