• Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semi-arid regions. J. Climate Appl. Meteor, 23 , 541554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Kuo Y. H. , Hsie E. Y. , Low-Nam S. , and Bettge T. W. , 1989: Estimation of skill and uncertainty in regional numerical models. Quart. J. Roy. Meteor. Soc, 115 , 763806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arola, A., 1999: Parameterization of turbulent and mesoscale fluxes for heterogeneous surfaces. J. Atmos. Sci, 56 , 584598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., and Pielke R. A. , 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev, 117 , 21132136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., and Liu Y. , 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land-surface forcing. J. Geophys. Res, 101 , 74997518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., Eloranta E. W. , Gurer K. , and Tripoli G. J. , 1998: An evaluation of the large-eddy simulation option of the Regional Atmospheric Modeling System in simulating a convective boundary layer: A FIFE case study. J. Atmos. Sci, 55 , 11091130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and Avissar R. , 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res.,107, 8037, doi:10.1029/2000JD000266.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., Weaver C. P. , Nolan D. S. , and Avissar R. , 2003: A preferred dynamical scale for landscape-forced mesoscale circulations? J. Geophys. Res.,108, 8808, doi:10.1029/2002JD003097.

    • Search Google Scholar
    • Export Citation
  • Baker, R. D., Lynn B. H. , Boone A. , Tao W-K. , and Simpson J. , 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor, 2 , 193211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res, 101 , 72097225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and Arnold D. L. , 1998: Land–surface–atmosphere interactions associated with deep convection in Illinois. Int. J. Climatol, 18 , 16371653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, D., and Biner S. , 2004: Internal variability of RCM simulations over an annual cycle. Climate Dyn, 22 , 3346.

  • Chen, F., and Avissar R. , 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor, 33 , 13231340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T-C., and Takle E. S. , 2002: Reply. Bull. Amer. Meteor. Soc, 83 , 16611663.

  • Christensen, O. B., Gaertner M. A. , Prego J. A. , and Polcher J. , 2001: Internal variability of regional climate models. Climate Dyn, 17 , 875887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys, 82 , 529.

  • Cutrim, E., Martin D. W. , and Rabin R. , 1995: Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteor. Soc, 76 , 18011805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., and Pielke R. A. , 1993: Vertical heat fluxes generated by mesoscale atmospheric flow induced by thermal inhomogeneities in the PBL. J. Atmos. Sci, 50 , 919926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Manabe S. , 1993: Climate variability and land-surface processes. Adv. Water Resour, 16 , 320.

  • Denis, B., Laprise R. , Caya D. , and Côté J. , 2002: Downscaling ability of one-way nested regional climate models: The big-brother experiment. Climate Dyn, 18 , 627646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., and Zhong S. , 2002: Comments on “Atmospheric disturbance caused by human modification of the landscape.”. Bull. Amer. Meteor. Soc, 83 , 277279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., Hubbe J. M. , Liljegren J. C. , Shaw W. J. , Collatz G. J. , Cook D. R. , and Hart R. L. , 1998: A technique for determining the spatial and temporal distribution of surface fluxes of heat and moisture over the southern Great Plains cloud and radiation testbed. J. Geophys. Res, 103 , 61096121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor, 4 , 552569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture– boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor, 4 , 570583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003c: Atmospheric controls on soil moisture– boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res.,108, 8385, doi:10.1029/2001JD001515.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., Weaver C. P. , Avissar R. , Walko R. L. , and Miguez-Macho G. , 2003: Sensitivity of model-simulated summertime precipitation over the Mississippi River basin to the spatial distribution of initial soil moisture. J. Geophys. Res.,108, 8855, doi:10.1029/2002JD003107.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Bi X. , 2000: A study of internal variability of a regional climate model. J. Geophys. Res, 105 , 2950329521.

  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition-season arctic stratus. Ph.D. dissertation, Colorado State University, 270 pp.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and Pitman A. J. , 2002: Comments on “Suppressing impacts of the Amazonian deforestation by the global circulation change.”. Bull. Amer. Meteor. Soc, 83 , 16571661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J., and Fritsch J. , 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys, 49 , 93106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Klemp, J. B., and Wilhelmson R. B. , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci, 35 , 10701096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor, 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Higgins R. W. , and Van den Dool H. M. , 2003a: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett.,30, 1241, doi:10.1029/ 2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Higgins R. W. , and Van den Dool H. M. , 2003b: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett.,30, 1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Pielke R. A. , 2001: A climate version of the Regional Atmospheric Modeling System. Theor. Appl. Climatol, 68 , 155173.

  • Liu, Y., and Avissar R. , 1999: A study of persistence in the land– atmosphere system using a general circulation model and observations. J. Climate, 12 , 21392153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., and Tao W. K. , 2001: A parameterization for triggering of landscape-generated moist convection. Part II: Zero-order and first-order closure. J. Atmos. Sci, 58 , 593607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., Abramopoulos F. , and Avissar R. , 1995: Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs. J. Climate, 8 , 932951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., Tao W. K. , and Abramopoulos F. , 2001: A parameterization for triggering of landscape-generated moist convection. Part I: Analysis of high-resolution model results. J. Atmos. Sci, 58 , 575592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., Sun J. , Vickers D. , Macpherson J. I. , and Pederson J. R. , 1994: Observations of fluxes and inland breezes over a heterogeneous surface. J. Atmos. Sci, 51 , 24842499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys, 20 , 851875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., Walko R. L. , Harrington J. L. , and Cotton W. R. , 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res, 45 , 339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., Adler R. F. , Xu L. , and Surratt J. , 2004: The impact of Amazonian deforestation on dry season rainfall. J. Climate, 17 , 13061319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nykanen, D. K., Foufoula-Georgiou E. , and Lapenta W. M. , 2001: Impact of small-scale rainfall variability on larger-scale spatial organization of land–atmosphere fluxes. J. Hydrometeor, 2 , 105120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., 1991: Springtime soil moisture variability and North American drought as simulated by the NCAR Community Climate Model I. J. Climate, 4 , 890897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J. S., 1994a: Global ecosystem framework—Definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37 pp. [Available from Customer Services, U.S. Geological Survey, EROS Data Center, 47914 252nd St., Sioux Falls, SD 57198-0001.].

    • Search Google Scholar
    • Export Citation
  • Olson, J. S., 1994b: Global ecosystem framework—Translation strategy. USGS EROS Data Center Internal Report, Sioux Falls, SD, 39 pp. [Available from Customer Services, U.S. Geological Survey, EROS Data Center, 47914 252nd St., Sioux Falls, SD 57198-0001.].

    • Search Google Scholar
    • Export Citation
  • Paegle, J., Mo K. C. , and Nogues-Paegle J. , 1996: Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev, 124 , 345361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J., and Eltahir E. A. B. , 2002: Teleconnections of soil moisture and rainfall during the 1993 midwest summer flood. Geophys. Res. Lett.,29, 1865, doi:10.1029/2002GL014815.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys, 39 , 151177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., Stadler S. , Wetzel P. J. , Stensrud D. J. , and Gregory M. , 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc, 71 , 272280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc, 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res.,108, 8846, doi:10.1029/ 2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rowntree, P. R., and Bolton J. A. , 1983: Simulations of the atmospheric response to soil moisture anomalies over Europe. Quart. J. Roy. Meteor. Soc, 109 , 501526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijarvi, H., 1995: Sea breeze effects on large-scale atmospheric flow. Contrib. Atmos. Phys, 68 , 335344.

  • Schar, C., Luthi D. , and Beyerle U. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., and Arritt R. W. , 1992: Non-classical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc, 73 , 15931604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., and Doran J. C. , 2001: Observations of systematic boundary layer divergence patterns and their relationship to land use and topography. J. Climate, 14 , 17531764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the earth's climate. Science, 215 , 14981501.

  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett, 28 , 139142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., Wai M-K. , Cooper H. J. , Rubes M. T. , and Hsu A. , 1994: Linking boundary-layer circulations and surface processes during FIFE 89. Part I: Observational analysis. J. Atmos. Sci, 51 , 14971529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Lebel T. , 1998: Observational evidence of persistent convective-scale rainfall patterns. Mon. Wea. Rev, 126 , 15971607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., Said F. , and Lebel T. , 1997: Interactions between the land surface and mesoscale rainfall variability during HAPEX-Sahel. Mon. Wea. Rev, 125 , 22112227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., Cotton W. R. , Harrington J. L. , and Meyers M. P. , 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res, 38 , 2962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor, 39 , 931944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Bras R. , and Eltahir E. A. B. , 2000: The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J. Hydrometeor, 1 , 267286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. southern Great Plains during summer. Part II: Mean impacts of the mesoscale. J. Hydrometeor, 5 , 12471258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and Avissar R. , 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc, 82 , 269281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and Avissar R. , 2002: Reply. Bull. Amer. Meteor. Soc, 83 , 280283.

  • Weaver, C. P., Baidya Roy S. , and Avissar R. , 2002: Sensitivity of simulated mesoscale atmospheric circulations resulting from landscape heterogeneity to aspects of model configuration. J. Geophys. Res.,107, 8041, doi:10.1029/2001JD000376.

    • Search Google Scholar
    • Export Citation
  • Weisse, R., Heyen H. , and von Storch H. , 2000: Sensitivity of a regional atmospheric model to a sea-state dependent roughness and the need of ensemble calculations. Mon. Wea. Rev, 128 , 36313642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Zeng F. J. , Mitchell K. E. , Janjic Z. , and Rogers E. , 2001: The impact of land surface processes on simulations of the U.S. hydrological cycle: A case study of the 1993 flood using the SSiB land surface model in the NCEP Eta regional model. Mon. Wea. Rev, 129 , 28332860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Pielke R. A. , 1995: Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Climate, 8 , 11561177.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 59 3
PDF Downloads 61 32 2

Coupling between Large-Scale Atmospheric Processes and Mesoscale Land–Atmosphere Interactions in the U.S. Southern Great Plains during Summer. Part I: Case Studies

View More View Less
  • 1 Center for Environmental Prediction, Department of Environmental Sciences, Rutgers–The State University of New Jersey, New Brunswick, New Jersey
Restricted access

Abstract

This paper is Part I of a two-part study that uses high-resolution Regional Atmospheric Modeling System (RAMS) simulations to investigate mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. The focus is on the atmospheric dynamics associated with mesoscale heterogeneity in the underlying surface fluxes: how shifts in meteorological regimes modulate these diurnal, mesoscale processes, and their overall impact at larger scales and over multiple diurnal cycles. Part I examines individual case study time periods drawn from the simulations that illustrate general points about the key land–atmosphere interactions. The main findings are as follows: The mesoscale processes are embedded within a synoptic-scale organization that controls the background meteorological regime at a given location. During the clear, dry days in the simulated months, heterogeneity in the surface fluxes forces strong, lower-tropospheric, mesoscale circulations that exhibit a characteristic dynamical life cycle over diurnal time scales. In general, the background large-scale flow does not affect the overall intensity of these coherent roll structures, though strong large-scale subsidence can sometimes dampen them. In addition, depending on the thermodynamic profile, the strong vertical motions associated with these circulations are sufficient to trigger shallow or even deep convection, with associated clouds and precipitation. Furthermore, surface heterogeneity sufficient to force such circulations can arise even without heterogeneity in preexisting land cover characteristics such as vegetation, for example, solely as a result of spatial variability in rainfall and other atmospheric processes. In Part II the mesoscale land–atmosphere interactions in these case study periods are placed in the larger context of the full, monthlong simulations.

Corresponding author address: Christopher P. Weaver, Center for Environmental Prediction, Department of Environmental Sciences, Rutgers–The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551. Email: weaver@cep.rutgers.edu

Abstract

This paper is Part I of a two-part study that uses high-resolution Regional Atmospheric Modeling System (RAMS) simulations to investigate mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. The focus is on the atmospheric dynamics associated with mesoscale heterogeneity in the underlying surface fluxes: how shifts in meteorological regimes modulate these diurnal, mesoscale processes, and their overall impact at larger scales and over multiple diurnal cycles. Part I examines individual case study time periods drawn from the simulations that illustrate general points about the key land–atmosphere interactions. The main findings are as follows: The mesoscale processes are embedded within a synoptic-scale organization that controls the background meteorological regime at a given location. During the clear, dry days in the simulated months, heterogeneity in the surface fluxes forces strong, lower-tropospheric, mesoscale circulations that exhibit a characteristic dynamical life cycle over diurnal time scales. In general, the background large-scale flow does not affect the overall intensity of these coherent roll structures, though strong large-scale subsidence can sometimes dampen them. In addition, depending on the thermodynamic profile, the strong vertical motions associated with these circulations are sufficient to trigger shallow or even deep convection, with associated clouds and precipitation. Furthermore, surface heterogeneity sufficient to force such circulations can arise even without heterogeneity in preexisting land cover characteristics such as vegetation, for example, solely as a result of spatial variability in rainfall and other atmospheric processes. In Part II the mesoscale land–atmosphere interactions in these case study periods are placed in the larger context of the full, monthlong simulations.

Corresponding author address: Christopher P. Weaver, Center for Environmental Prediction, Department of Environmental Sciences, Rutgers–The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551. Email: weaver@cep.rutgers.edu

Save