Evaluation of Soil Moisture in the NCEP–NCAR and NCEP–DOE Global Reanalyses

Cheng-Hsuan Lu RS Information Systems Inc., McLean, Virginia, and NOAA/NWS/NCEP Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by Cheng-Hsuan Lu in
Current site
Google Scholar
PubMed
Close
,
Masao Kanamitsu Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Masao Kanamitsu in
Current site
Google Scholar
PubMed
Close
,
John O. Roads Scripps Institution of Oceanography, La Jolla, California

Search for other papers by John O. Roads in
Current site
Google Scholar
PubMed
Close
,
Wesley Ebisuzaki NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Wesley Ebisuzaki in
Current site
Google Scholar
PubMed
Close
,
Kenneth E. Mitchell NOAA/NWS/NCEP Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by Kenneth E. Mitchell in
Current site
Google Scholar
PubMed
Close
, and
Dag Lohmann NOAA/NWS/NCEP Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by Dag Lohmann in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study compares soil moisture analyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis (R-1) and the later NCEP– Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) global reanalysis (R-2). The R-1 soil moisture is strongly controlled by nudging it to a prescribed climatology, whereas the R-2 soil moisture is adjusted according to differences between model-generated and observed precipitation. While mean soil moisture fields from R-1 and R-2 show many geographic similarities, there are some major differences. This study uses in situ observations from the Global Soil Moisture Data Bank to evaluate the two global reanalysis products. In general, R-2 does a better job of simulating interannual variations, the mean seasonal cycle, and the persistence of soil moisture, when compared to observations. However, the R-2 reanalysis does not necessarily represent observed soil moisture characteristics well in all aspects. Sometimes R-1 provides a better soil moisture analysis on monthly time scales, which is likely a consequence of the deficiencies in the R-2 surface water balance.

Corresponding author address: Dr. Cheng-Hsuan Lu, NOAA/NWS/NCEP Environmental Modeling Center, 5200 Auth Road, Camp Springs, MD 20746. Email: Sarah.Lu@noaa.gov

Abstract

This study compares soil moisture analyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis (R-1) and the later NCEP– Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) global reanalysis (R-2). The R-1 soil moisture is strongly controlled by nudging it to a prescribed climatology, whereas the R-2 soil moisture is adjusted according to differences between model-generated and observed precipitation. While mean soil moisture fields from R-1 and R-2 show many geographic similarities, there are some major differences. This study uses in situ observations from the Global Soil Moisture Data Bank to evaluate the two global reanalysis products. In general, R-2 does a better job of simulating interannual variations, the mean seasonal cycle, and the persistence of soil moisture, when compared to observations. However, the R-2 reanalysis does not necessarily represent observed soil moisture characteristics well in all aspects. Sometimes R-1 provides a better soil moisture analysis on monthly time scales, which is likely a consequence of the deficiencies in the R-2 surface water balance.

Corresponding author address: Dr. Cheng-Hsuan Lu, NOAA/NWS/NCEP Environmental Modeling Center, 5200 Auth Road, Camp Springs, MD 20746. Email: Sarah.Lu@noaa.gov

Save
  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108 .8845, doi:10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1 , 523547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., Parrish D. F. , and Lord S. J. , 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Guo Z. , and Gao X. , 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5 , 10111033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entin, J. K., Robock A. , Vinnikov K. Y. , Hollinger S. E. , Liu S. , and Namkhai A. , 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105 , 1186511877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Janowiak J. E. , and Yao Y-P. , 1996: A gridded hourly precipitation data base for the United States (1962–1993). NCEP/Climate Prediction Center Atlas 1, National Centers for Environmental Prediction, 46 pp.

  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , cited. 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, National Centers for Environmental Prediction. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/index.html.].

  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7 , 822833.

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., and Gruber A. , 2003: Report of the GEWEX Global Precipitation Climatology Project (GPCP). WCRP Workshop on Precipitation Analysis Informal Rep. 11/2003, WCRP, Reading, United Kingdom, 111 pp.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Lu C-H. , Schemm J. , and Ebisuzaki W. , 2003: The predictability of soil moisture and near-surface temperature in hindcasts of the NCEP seasonal forecast model. J. Climate, 16 , 510521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., and Milly P. , 1997: The interplay between transpiration and run-off formulations in land-surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Koster, R., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., Robock A. , Liu S. , Mo X. , and Viterbo P. , 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6 , 180193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Wood E. , 2003: Timescales of land surface evapotranspiration response in the PILPS phase 2(c). Global Planet. Change, 38 , 8191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., O’Donnell G. M. , Lettenmaier D. P. , and Roads J. O. , 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res., 106 , 1784117862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meetschen, D., van den Hurk B. J. J. M. , Ament F. , and Drusch M. , 2004: Optimized surface radiation fields derived from Meteosat imagery and a regional atmospheric model. J. Hydrometeor., 5 , 10911101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mintz, Y., and Serafini Y. , 1992: A global monthly climatology of soil moisture and water balance. Climate Dyn., 8 , 1327.

  • Mitchell, K. E., and Coauthors, 2004a: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 ., D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004b: NCEP completes 25-year North American reanalysis: Precipitation assimilation and land surface are two hallmarks. GEWEX News, Vol. 14, No. 2, International GEWEX Project Office, Silver Spring, MD, 9–12.

  • Oglesby, R. J., Marshall S. , Erickson D. J. III, Roads J. O. , and Robertson F. R. , 2002: Thresholds in atmosphere–soil moisture interactions: Results from climate model studies. J. Geophys. Res., 107 .4224, doi:10.1029/2001JD001045.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38 , 185202.

  • Reichle, R. H., Koster R. D. , Dong J. , and Berg A. A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implication for data assimilation. J. Hydrometeor., 5 , 430442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., 2003: The NCEP–NCAR, NCEP–DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor., 4 , 826840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., Chen S-C. , Kanamitsu M. , and Juang H. , 1999: Surface water characteristics in NCEP global spectral model and reanalysis. J. Geophys. Res., 104 , D16,. 1930719328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., Kanamitsu M. , and Stewart R. , 2002: CSE water and energy budgets in the NCEP–DOE Reanalysis II. J. Hydrometeor., 3 , 227248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., Bosilovich M. , Kanamitsu M. , and Rodell M. , 2003: CEOP pilot data comparisons. CEOP Newsletter, No. 3, University of Tokyo, Tokyo, Japan, 2–5.

  • Robock, A., Vinnikov K. Y. , Schlosser C. A. , Speranskaya N. A. , and Xue Y. , 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8 , 1535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Schlosser, C. A., Robock A. , Vinnikov K. Y. , Speranskaya N. A. , and Xue Y. , 1997: 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev., 125 , 32793296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Coauthors, 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS Phase 2(d). Mon. Wea. Rev., 128 , 301321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, G., and Coauthors, 2000: Soil moisture simulations in revised AMIP models. J. Geophys. Res., 105 , 2663526644.

  • Vinnikov, K. Y., and Yeserkepova I. B. , 1991: Soil moisture: Empirical data and model results. J. Climate, 4 , 6679.

  • Vinnikov, K. Y., Robock A. , Speranskaya N. A. , and Schlosser C. A. , 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , 71637174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., Robock A. , Qui S. , and Entin J. K. , 1999a: Optimal design of surface networks for observation of soil moisture. J. Geophys. Res., 104 , 1974319749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., Robock A. , Qiu S. , Entin J. K. , Owe M. , Choudhury B. J. , Hollinger S. E. , and Njoku E. G. , 1999b: Satellite remote sensing of soil moisture in Illinois, United States. J. Geophys. Res., 104 , 41454168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z-L., Dickinson R. E. , Robock A. , and Vinnikov K. Y. , 1997: Validation of the snow submodel of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate, 10 , 353373.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 509 245 81
PDF Downloads 211 63 0