Intercomparison of Rain Gauge, Radar, and Satellite-Based Precipitation Estimates with Emphasis on Hydrologic Forecasting

Koray K. Yilmaz Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

Search for other papers by Koray K. Yilmaz in
Current site
Google Scholar
PubMed
Close
,
Terri S. Hogue Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Terri S. Hogue in
Current site
Google Scholar
PubMed
Close
,
Kuo-lin Hsu Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Kuo-lin Hsu in
Current site
Google Scholar
PubMed
Close
,
Soroosh Sorooshian Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
,
Hoshin V. Gupta Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

Search for other papers by Hoshin V. Gupta in
Current site
Google Scholar
PubMed
Close
, and
Thorsten Wagener Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Thorsten Wagener in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study compares mean areal precipitation (MAP) estimates derived from three sources: an operational rain gauge network (MAPG), a radar/gauge multisensor product (MAPX), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) satellite-based system (MAPS) for the time period from March 2000 to November 2003. The study area includes seven operational basins of varying size and location in the southeastern United States. The analysis indicates that agreements between the datasets vary considerably from basin to basin and also temporally within the basins. The analysis also includes evaluation of MAPS in comparison with MAPG for use in flow forecasting with a lumped hydrologic model [Sacramento Soil Moisture Accounting Model (SAC-SMA)]. The latter evaluation investigates two different parameter sets, the first obtained using manual calibration on historical MAPG, and the second obtained using automatic calibration on both MAPS and MAPG, but over a shorter time period (23 months). Results indicate that the overall performance of the model simulations using MAPS depends on both the bias in the precipitation estimates and the size of the basins, with poorer performance in basins of smaller size (large bias between MAPG and MAPS) and better performance in larger basins (less bias between MAPG and MAPS). When using MAPS, calibration of the parameters significantly improved the model performance.

Corresponding author address: Koray K. Yilmaz, Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011. Email: koray@hwr.arizona.edu

Abstract

This study compares mean areal precipitation (MAP) estimates derived from three sources: an operational rain gauge network (MAPG), a radar/gauge multisensor product (MAPX), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) satellite-based system (MAPS) for the time period from March 2000 to November 2003. The study area includes seven operational basins of varying size and location in the southeastern United States. The analysis indicates that agreements between the datasets vary considerably from basin to basin and also temporally within the basins. The analysis also includes evaluation of MAPS in comparison with MAPG for use in flow forecasting with a lumped hydrologic model [Sacramento Soil Moisture Accounting Model (SAC-SMA)]. The latter evaluation investigates two different parameter sets, the first obtained using manual calibration on historical MAPG, and the second obtained using automatic calibration on both MAPS and MAPG, but over a shorter time period (23 months). Results indicate that the overall performance of the model simulations using MAPS depends on both the bias in the precipitation estimates and the size of the basins, with poorer performance in basins of smaller size (large bias between MAPG and MAPS) and better performance in larger basins (less bias between MAPG and MAPS). When using MAPS, calibration of the parameters significantly improved the model performance.

Corresponding author address: Koray K. Yilmaz, Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011. Email: koray@hwr.arizona.edu

Save
  • Adler, R. F., Huffman G. J. , Bolvin D. T. , Curtis S. , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39 , 20072023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Kidd C. , Petty G. , Morrissey M. , and Goodman H. M. , 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreassian, V., Perrin C. , Michel C. , Usart-Sanchez I. , and Lavabre J. , 2001: Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models. J. Hydrol., 250 , 206223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brazil, L. E., and Hudlow M. D. , 1981: Calibration procedures used with the National Weather Service River Forecast System. Water and Related Land Resource Systems, Y. Y. Haimes and J. Kindler, Eds., Pergamon, 457–566.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., 1995: The NWS River Forecast System—Catchment modeling. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 311–366.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., Ferral R. L. , and McGuire R. A. , 1973: A generalized streamflow simulation system—Conceptual modeling for digital computers. Joint Federal–State River Forecast Center Tech. Rep., Department of Water Resources, State of California and National Weather Service, 204 pp.

  • Duan, Q. Y., Sorooshian S. , and Gupta H. V. , 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28 , 10151031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Marks G. F. , 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12 , 755770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnerty, B. D., Smith M. B. , Seo D-J. , Koren V. , and Moglen G. E. , 1997: Space–time scale sensitivity of the Sacramento model to radar-gage precipitation inputs. J. Hydrol., 203 , 2138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., 2002: Activities to improve WSR-88D radar rainfall estimation in the National Weather Service. Proc. Second Federal Interagency Hydrologic Modeling Conf., Las Vegas, NV, Subcomittee on Hydrology, Advisory Committee on Water Data, CD-ROM. [Available online at http://www.nws.noaa.gov/oh/hrl/presentations/fihm02/pdfs/qpe_ hydromodelconf_web.pdf.].

  • Fulton, R. A., Breidenbach J. P. , Seo D-J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grassotti, C., Hoffman R. N. , Vivoni E. R. , and Entekhabi D. , 2003: Multiple-timescale intercomparison of two radar products and rain gauge observations over the Arkansas–Red River basin. Wea. Forecasting, 18 , 12071229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimes, D. I. F., and Diop M. , 2003: Satellite-based rainfall estimation for river flow forecasting in Africa. I: Rainfall estimates and hydrological forecasts. Hydrol. Sci. J., 48 , 567584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., and Legates D. R. , 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75 , 215227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Beven K. J. , and Wagener T. , 2005: Model calibration and uncertainty estimation. Encyclopedia of Hydrological Sciences, M. G. Anderson, Ed., John Wiley & Sons, in press.

    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., Sorooshian S. , Gupta H. V. , Holz A. , and Braatz D. , 2000: A multistep automatic calibration scheme for river forecasting models. J. Hydrometeor., 1 , 524542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multiple channel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gupta H. V. , Gao X. , Sorooshian S. , and Imam B. , 2002: Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water Resour. Res., 38 .1302, doi:10.1029/2001WR000795.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D., Smith M. , Koren V. , and Finnerty B. , 1999: Comparing mean areal precipitation estimates from NEXRAD and rain gauge networks. J. Hydrol. Eng., 2 , 117124.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21 , 10411066.

  • Koren, V. I., Finnerty B. D. , Schaake J. C. , Smith M. B. , Seo D-J. , and Duan Q. Y. , 1999: Scale dependencies of hydrologic models to spatial variability of precipitation. J. Hydrol., 217 , 285302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Ciach G. J. , McCollum J. R. , and Bacotiu C. , 2000: Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J. Appl. Meteor., 39 , 10711086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3 , 112130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and DeLiberty T. L. , 1993: Precipitation measurement biases in the United States. Water Resour. Bull., 29 , 855861.

  • McCollum, J. R., Krajewski W. F. , Ferraro R. R. , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41 , 10651080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., Krajewski W. F. , Goodrich D. C. , Gao X. , and Sorooshian S. , 2003: Estimating rainfall intensities from weather radar data: The scale-dependency problem. J. Hydrometeor., 4 , 782797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G., and Krajewski W. F. , 1996: Satellite estimation of precipitation over land. Hydrol. Sci. J., 41 , 433451.

  • Rozumalski, R. A., 2000: A quantitative assessment of the NESDIS Auto-Estimator. Wea. Forecasting, 15 , 397415.

  • Scofield, R. A., and Kuligowski R. J. , 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18 , 10371051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Fulton R. A. , and Breidenbach J. P. , 1997: Interagency memorandum of understanding among the NEXRAD program, WSR-88D Operational Support Facility, and the NWS/OH Hydrologic Research Laboratory. NWS/OH Hydrologic Research Laboratory Final Report, Silver Spring, MD. [Available from NWS/OH/HRL, 1325 East–West Hwy., W/OH1, Silver Spring, MD 20910.].

  • Sivapalan, M., and Coauthors, 2003: IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J., 48 , 857880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Seo D. J. , Baeck M. L. , and Hudlow M. D. , 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32 , 20352045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stellman, K. M., Fuelberg H. E. , Garza R. , and Mullusky M. , 2001: An examination of radar and rain gauge–derived mean areal precipitation over Georgia watersheds. Wea. Forecasting, 16 , 133144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintikidis, D., Georgakakos K. P. , Artan G. A. , and Tsonis A. A. , 1999: A feasibility study on mean areal rainfall estimation and hydrologic response in the Blue Nile region using METEOSAT images. J. Hydrol., 221 , 97116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., Zhao L. , Ferraro R. R. , Poe G. , Li X. , and Grody N. C. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38 .8068, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Winchell, M., Gupta H. V. , and Sorooshian S. , 1998: On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation. Water Resour. Res., 34 , 26552670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34 , 11431160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, C. B., Bradley A. A. , Krajewski W. F. , Kruger A. , and Morrissey M. L. , 2000: Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting. J. Hydrometeor., 1 , 241254.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2062 523 97
PDF Downloads 1381 284 18