• Asli, M., , and Marcotte D. , 1995: Comparison of approaches to spatial estimation in a bivariate contest. Math. Geol., 27 , 641658.

  • Barros, A. P., , and Lettenmaier D. P. , 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous area. Mon. Wea. Rev., 121 , 11951214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , and Lettenmaier D. P. , 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32 , 265284.

  • Barry, R. G., 1992: Mountain climatology and past and potential future climatic changes in mountain regions. Mt. Res. Dev., 12 , 7186.

  • Basist, A., , Bell G. D. , , and Meentemeyer V. , 1994: Statistical relationships between topography and precipitation patterns. J. Climate, 7 , 13051315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2003: Climatic change in mountain regions: A review of possible impacts. Climatic Change, 59 , 531.

  • Bindlish, R., , and Barros A. P. , 2000: Disaggregation of rainfall for one-way coupling of atmospheric and hydrologic models in regions of complex terrain. Global Planet. Change, 25 , 111132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , Sud Y. C. , , Schubert S. D. , , and Walker G. K. , 2003: Numerical simulation of the large-scale North American monsoon water sources. J. Geophys. Res., 108 .8614, doi:10.1029/2002JD003095.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., , and Comrie A. C. , 2002: Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Climate Res., 22 , 115128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1986: Synoptic-dynamic character of “bursts” and “breaks” in the south-west U.S. summer precipitation singularity. J. Climatol., 6 , 605623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountain terrain. J. Appl. Meteor., 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., , Gibson W. P. , , Taylor G. H. , , Johnson G. L. , , and Pasteris P. , 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22 , 99113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deutsch, C. V., , and Journel A. G. , 1998: GSLIB—Geostatistical Software Library and User’s Guide. 2d ed. Oxford University Press, 369 pp.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., , Grosjean M. , , and Graumlich L. , 2003: Climate variability and change in high elevation regions: Past, present, and future. Climate Change, 59 , 14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drogue, G., , Humbert J. , , Deraisme J. , , Mahr N. , , and Freslon N. , 2002: A statistical-topographic model using an omnidirectional parameterization of the relief for mapping orographic rainfall. Int. J. Climatol., 22 , 599613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EDAC, 1996: 60 meter elevation grid image for the state of New Mexico. Earth Data Analysis Center Albuquerque, NM, DEM map.

  • Fawcett, P. J., , Stalker J. R. , , and Gutzler D. S. , 2002: Multistage moisture transport into the interior of northern Mexico during the North American summer monsoon. Geophys. Res. Lett., 29 .2094, doi:10.1029/2002GL015693.

    • Search Google Scholar
    • Export Citation
  • Goodrich, D. C., , Faures J. , , Woolhiser D. A. , , Lane L. J. , , and Sorooshian S. , 1995: Measurement and analysis of small-scale convective storm rainfall variability. J. Hydrol., 173 , 283308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228 , 113129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hevesi, J. A., , Istok J. D. , , and Flint A. L. , 1992: Precipitation estimation in mountain terrain using multivariate geostatistics. Part I: Structure analysis. J. Appl. Meteor., 31 , 661676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Mo K. C. , , and Schubert S. D. , 1996: The moisture budget of the central United States in spring as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. Mon. Wea. Rev., 124 , 939963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Yao Y. , , Yarosh E. S. , , Janowiak J. E. , , and Mo K. C. , 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10 , 481507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, P., 1973: The interaction of relief and synoptic situation on the distribution of storm rainfall in the vicinity of Dunedin. N. Z. Geogr., 29 , 3144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyriakidis, P. C., , Kim J. , , and Miller N. L. , 2001: Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteor., 40 , 18551877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaud, J. D., , Avine B. A. , , and Penalba O. C. , 1995: Spatial and elevational variations of summer rainfall in the southwestern United States. J. Appl. Meteor., 34 , 26892703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mock, C. J., 1996: Climatic controls and spatial variations of precipitation in the western United States. J. Climate, 9 , 11111125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, cited. 2004: Special feature: The North American Monsoon system. [Available online at http://www.srh.noaa.gov/abq/climate/Monthlyreports/July/nams.html.].

  • Oki, T., , Musiake K. , , and Koike T. , 1991: Spatial rainfall distribution at a storm event in mountainous regions, estimated by orography and wind direction. Water Resour. Res., 27 , 359369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, D. L., , Dolph J. , , and Marks D. , 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. For. Meteor., 58 , 119141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., , and Hill R. H. , 1974: Arizona Climate 1931–1972. 2d ed. University of Arizona Press, 616 pp.

  • Sheppard, P. R., , Comrie A. C. , , Packin G. D. , , Angersbach K. , , and Hughes J. K. , 2002: The climate of the US Southwest. Climate Res., 21 , 219238.

  • Sotillo, M. G., , Ramis C. , , Romero R. , , Alonso S. , , and Homar V. , 2003: Role of orography in the spatial distribution of precipitation over the Spanish Mediterranean zone. Climate Res., 23 , 247261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spatial Climate Analysis Service, cited. 2003: Climatology normals (1971–2000). Oregon State University. [Available online at http://www.ocs.oregonstate.edu/prism/products/.].

  • Sturman, A., , and Wanner H. , 2001: A comparative review of the weather and climate of the Southern Alps of New Zealand and the Europe Alps. Mt. Res. Dev., 21 , 359369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, C. B., , Peters-Lidard C. D. , , Kruger A. , , Baeck M. L. , , Nelson B. R. , , Bradley A. A. , , and Smith J. A. , 1999: An evaluation of NEXRAD precipitation estimates in complex terrain. J. Geophys. Res., 104 , D16,. 1969119703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., , and Meko D. M. , 1997: Number of winter precipitation days reconstructed from Southwestern tree rings. J. Climate, 10 , 26632669.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 245 23
PDF Downloads 163 163 23

Geostatistical Mapping of Mountain Precipitation Incorporating Autosearched Effects of Terrain and Climatic Characteristics

View More View Less
  • 1 Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 2 Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, New Mexico
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Hydrologic and ecologic studies in mountainous terrain are sensitive to the temporal and spatial distribution of precipitation. In this study a geostatistical model, Auto-Searched Orographic and Atmospheric Effects Detrended Kriging (ASOADeK), is introduced to map mountain precipitation using only precipitation gauge data. The ASOADeK model considers both precipitation spatial covariance and orographic and atmospheric effects in estimating precipitation distribution. The model employs gauge data and a multivariate linear regression approach to autosearch regional and local climatic settings (i.e., infer the spatial gradient in atmospheric moisture distribution and the effective moisture flux direction), and local orographic effects (the effective terrain elevation and aspect). The observed gauge precipitation data are then spatially detrended by the autosearched regression surface. The spatially detrended gauge data are further interpolated by ordinary kriging to generate a residual precipitation surface. The precipitation map is then constructed by adding the regression surface to the kriged residual surface. The ASOADeK model was applied to map monthly precipitation for a mountainous area in semiarid northern New Mexico. The effective moisture flux directions and spatial moisture trends identified by the optimal multiple linear regressions, using only gauge data, agree with the regional climate setting. When compared to a common precipitation mapping product [Precipitation-elevation Regression on Independent Slopes Model (PRISM)], the ASOADeK summer precipitation maps of the study area agree well with the PRISM estimates, and with higher spatial resolution. The ASOADeK winter maps improve upon PRISM estimates. ASOADeK gives better estimates than precipitation kriging and precipitation-elevation cokriging because it considers orographic and atmospheric effects more completely.

Corresponding author address: Huade Guan, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Leroy Place 801, Socorro, NM 87801. Email: hdguan@nmt.edu

Abstract

Hydrologic and ecologic studies in mountainous terrain are sensitive to the temporal and spatial distribution of precipitation. In this study a geostatistical model, Auto-Searched Orographic and Atmospheric Effects Detrended Kriging (ASOADeK), is introduced to map mountain precipitation using only precipitation gauge data. The ASOADeK model considers both precipitation spatial covariance and orographic and atmospheric effects in estimating precipitation distribution. The model employs gauge data and a multivariate linear regression approach to autosearch regional and local climatic settings (i.e., infer the spatial gradient in atmospheric moisture distribution and the effective moisture flux direction), and local orographic effects (the effective terrain elevation and aspect). The observed gauge precipitation data are then spatially detrended by the autosearched regression surface. The spatially detrended gauge data are further interpolated by ordinary kriging to generate a residual precipitation surface. The precipitation map is then constructed by adding the regression surface to the kriged residual surface. The ASOADeK model was applied to map monthly precipitation for a mountainous area in semiarid northern New Mexico. The effective moisture flux directions and spatial moisture trends identified by the optimal multiple linear regressions, using only gauge data, agree with the regional climate setting. When compared to a common precipitation mapping product [Precipitation-elevation Regression on Independent Slopes Model (PRISM)], the ASOADeK summer precipitation maps of the study area agree well with the PRISM estimates, and with higher spatial resolution. The ASOADeK winter maps improve upon PRISM estimates. ASOADeK gives better estimates than precipitation kriging and precipitation-elevation cokriging because it considers orographic and atmospheric effects more completely.

Corresponding author address: Huade Guan, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Leroy Place 801, Socorro, NM 87801. Email: hdguan@nmt.edu

Save