Abstract
Droughts can be characterized by their severity, frequency and duration, and areal extent. Depth–area–duration analysis, widely used to characterize precipitation extremes, provides a basis for the evaluation of drought severity when storm depth is replaced by an appropriate measure of drought severity. Gridded precipitation and temperature data were used to force a physically based macroscale hydrologic model at 1/2° spatial resolution over the continental United States, and construct a drought history from 1920 to 2003 based on the model-simulated soil moisture and runoff. A clustering algorithm was used to identify individual drought events and their spatial extent from monthly summaries of the simulated data. A series of severity–area–duration (SAD) curves were constructed to relate the area of each drought to its severity. An envelope of the most severe drought events in terms of their SAD characteristics was then constructed. The results show that (a) the droughts of the 1930s and 1950s were the most severe of the twentieth century for large areas; (b) the early 2000s drought in the western United States is among the most severe in the period of record, especially for small areas and short durations; (c) the most severe agricultural droughts were also among the most severe hydrologic droughts, however, the early 2000s western U.S. drought occupies a larger portion of the hydrologic drought envelope curve than does its agricultural companion; and (d) runoff tends to recover in response to precipitation more quickly than soil moisture, so the severity of hydrologic drought during the 1930s and 1950s was dampened by short wet spells, while the severity of the early 2000s drought remained high because of the relative absence of these short-term phenomena.
Corresponding author address: Dennis P. Lettenmaier, Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195. Email: dennisl@u.washington.edu