• Adler, R. F., , and Negri A. J. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27 , 3038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , Huffman G. J. , , Bolvin D. T. , , Curtis S. , , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and gauge information. J. Appl. Meteor., 39 , 20072023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., , and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M. B., , and Gruber A. , 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Bellerby, T. J., 2004: A feature-based approach to satellite precipitation monitoring using geostationary IR imagery. J. Hydrometeor., 5 , 910921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T. J., , and Montaseri M. , 2001: A statistical modelling approach to satellite precipitation monitoring for numerical hydrological models. Advanced Remote Sensing Techniques in Hydrology, Bristol, United Kingdom, British Historical Society.

  • Bellerby, T. J., , Todd M. , , Kniveton D. , , and Kidd C. , 2000: Rainfall estimation from a combination of TRMM Precipitation Radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39 , 21152128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , and Bauer P. , 2003: Model rain and clouds over oceans: Comparison with SSM/I observations. Mon. Wea. Rev., 131 , 12401255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essenwanger, O., 1976: Applied Statistics in Atmospheric Science, Part A: Frequencies and Curve Fitting. Elsevier, 412 pp.

  • Filliben, J. J., 1975: The probability plot correlation coefficient test for normality. Technometrics, 17 , 1,. 111117.

  • Gebremichael, M., , Krajewski W. , , Morrissey M. , , Langerud D. , , Huffman G. , , and Adler R. , 2003: Error uncertainty analysis of GPCP monthly precipitation products: A data-based simulation study. J. Appl. Meteor., 42 , 18371848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., , Woodley W. L. , , Grube P. G. , , Martin D. W. , , Stout J. , , and Sikdar D. N. , 1978: Rain estimation from geosynchronous satellite data—Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., , and Krajewski W. F. , 2002: Uncertainty analysis of the TRMM ground validation radar: Applications to the TEFLUN-B field campaign. J. Appl. Meteor., 41 , 558572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52 , 105124.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , Adler R. F. , , Stocker E. F. , , Bolvin D. T. , , and Nelkin E. J. , 2003: Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, P4.11.

  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., , Kniveton D. R. , , Todd M. C. , , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Monitoring Mission (TRMM) two years after orbit. J. Appl. Meteor., 36 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., , Ahn M. H. , , Sohn B. J. , , Chung H. S. , , and Park H. S. , 2000: Rainrate estimation using the GMS-5 IR data and verification. Preprints, 10th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., 99–101.

  • Lanza, L. G., 2000: A conditional simulation model of intermittent rainfall fields. Hydrol. Earth Syst. Sci., 4 , 173183.

  • Lanza, L. G., , Ramirez J. A. , , and Todini E. , 2001: Stochastic rainfall interpolation and downscaling. Hydrol. Earth Syst. Sci., 5 , 139143.

  • Loucks, D. P., , Stedinger J. R. , , and Haith D. A. , 1981: Water Resource Systems Planning and Analysis. Prentice-Hall, 559 pp.

  • Mantoglou, A., 1987: Digital simulation of multivariate two- and three- dimensional stochastic processes with a spectral turning bands method. Math Geol., 19 , 129149.

    • Search Google Scholar
    • Export Citation
  • Mantoglou, A., , and Wilson J. L. , 1982: The turning bands method for simulating random fields using line generation by a spectral method. Water Resour. Res., 18 , 13791394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., , Palmacci M. , , Cimini D. , , Giuliani G. , , and Turk F. J. , 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens., 42 , 10181032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., , and Janowiak J. E. , 1996: Sampling-induced conditional biases in satellite climate-scale rainfall estimates. J. Appl. Meteor., 35 , 541548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, cited. 2003: Tropical Rainfall Monitoring Mission: Field campaigns. [Available online at http://trmm-fc.gsfc.nasa.gov/trmm_gv/.].

  • Nicholson, S. E., and Coauthors, 2003a: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteor., 42 , 13371354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003b: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42 , 13551368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , Wolff D. B. , , and Atlas D. , 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32 , 5072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. M. S., , O’Connell P. E. , , and Hosking J. R. M. , 1996a: Modelling the effects of spatial variability in rainfall on catchment response. 1: Formulation and calibration of a stochastic rainfall field model. J. Hydrol., 175 , 6788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. M. S., , O’Connell P. E. , , and Hosking J. R. M. , 1996b: Modelling the effects of spatial variability in rainfall on catchment response. 2: Experiments with distributed and lumped models. J. Hydrol., 175 , 89111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., 2003: NASA’s scientific agenda for GPM mission. Proc. Third GPM Workshop: Consolidating the Concept, Noordwijk, Netherlands, ESTEC, S101. [Available online at http://www.estec.esa.nl/conferences/03C06/].

  • Sorooshian, S., , Hsu K. , , Gao X. , , Gupta H. , , Imam B. , , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., , Kidd C. , , Levizzani V. , , and Marzano F. S. , 2004: A neural networks–based fusion technique to estimate half-hourly rainfall estimates at 0.1° resolution from satellite passive microwave and infrared data. J. Appl. Meteor., 43 , 576594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., , Siakh M. A. , , Azimi-Sadjadi M. R. , , Vonder Haar T. H. , , and Reinke D. L. , 1999: A study of cloud classification with neural networks using spectral and textural features. IEEE Trans. Neural Networks, 10 , 138151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, M., , Kidd C. , , Kniveton D. R. , , Bellerby T. J. , , and Kilham D. , 2001: A combined satellite infrared and passive microwave technique for the estimation of small scale rainfall. J. Atmos. Oceanic Technol., 18 , 742755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompson, A. F. B., , Ababou R. , , and Gelhar L. W. , 1989: Implementation of the three dimensional turning bands random field generator. Water Resour. Res., 25 , 22272243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., , Devenport J. C. , , and Scofield R. A. , 2002: The role of orographic and parallax corrections on real time high resolution rainfall rate distribution. Int. J. Remote Sens., 23 , 221230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widmann, M., , Bretherton C. , , and Salathé E. P. , 2003: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16 , 799816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , and Wigley T. M. I. , 2000: Precipitation predictors for downscaling: Observed and general circulation model relationships. Int. J. Climatol., 20 , 641661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , Hassan H. , , and Hanaki K. , 1998: Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol., 205 , 119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T., and Coauthors, 1994: Algorithms for retrieval of rainfall from passive microwave measurements. Remote Sens. Rev., 11 , 163194.

  • Wood, E. F., , Sivapalan M. , , and Beven K. , 1990: Similarity and scale in catchment storm response. Rev. Geophys., 28 , 118.

  • Wu, R., , Weinmann J. A. , , and Chin R. T. , 1985: Determination of rainfall rates from GOES satellite images by a pattern recognition technique. J. Atmos. Oceanic Technol., 2 , 314330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., 1999: From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr., 23 , 229249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., , Gao X. , , Sorooshian S. , , and Arkin P. A. , 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38 , 569579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., , Gao X. , , Sorooshian S. , , and Imam B. , 2000: Parameter estimation of the GOES precipitation index at different timescales. J. Geophys. Res., 105 , D15,. 2013120143.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 14
PDF Downloads 47 47 5

Probabilistic and Ensemble Representations of the Uncertainty in an IR/Microwave Satellite Precipitation Product

View More View Less
  • 1 Department of Geography, The University of Hull, Hull, United Kingdom
  • | 2 Department of Physics, The University of Hull, Hull, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

While current satellite techniques are theoretically capable of producing precipitation estimates to image pixel resolutions, significant uncertainty is present in such high-resolution products. This uncertainty is frequently difficult to characterize using scalar measures of additive error. This paper describes the development of a methodology to more fully represent the uncertainty in satellite precipitation retrievals. The methodology derives conditional probability distribution functions of rainfall on a pixel-by-pixel basis. This array of distribution functions is then combined with a simple model of the spatiotemporal covariance structure of the uncertainty in the precipitation field to stochastically generate an ensemble precipitation product. Each element of the ensemble represents an equiprobable realization of the precipitation field that is consistent with the original satellite data while containing a random element commensurate with the uncertainty in that field. The technique has been tested using data from the Tropical Rainfall Measuring Mission (TRMM) Texas and Florida Underflight Experiment (TEFLUN-B) field campaign.

Corresponding author address: Timothy J. Bellerby, Department of Geography, The University of Hull, Hull HU6 7RX, United Kingdom. Email: T.J.Bellerby@hull.ac.uk

Abstract

While current satellite techniques are theoretically capable of producing precipitation estimates to image pixel resolutions, significant uncertainty is present in such high-resolution products. This uncertainty is frequently difficult to characterize using scalar measures of additive error. This paper describes the development of a methodology to more fully represent the uncertainty in satellite precipitation retrievals. The methodology derives conditional probability distribution functions of rainfall on a pixel-by-pixel basis. This array of distribution functions is then combined with a simple model of the spatiotemporal covariance structure of the uncertainty in the precipitation field to stochastically generate an ensemble precipitation product. Each element of the ensemble represents an equiprobable realization of the precipitation field that is consistent with the original satellite data while containing a random element commensurate with the uncertainty in that field. The technique has been tested using data from the Tropical Rainfall Measuring Mission (TRMM) Texas and Florida Underflight Experiment (TEFLUN-B) field campaign.

Corresponding author address: Timothy J. Bellerby, Department of Geography, The University of Hull, Hull HU6 7RX, United Kingdom. Email: T.J.Bellerby@hull.ac.uk

Save