Lidar Measurement of Boundary Layer Evolution to Determine Sensible Heat Fluxes

W. E. Eichinger Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by W. E. Eichinger in
Current site
Google Scholar
PubMed
Close
,
H. E. Holder Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by H. E. Holder in
Current site
Google Scholar
PubMed
Close
,
R. Knight Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by R. Knight in
Current site
Google Scholar
PubMed
Close
,
J. Nichols Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by J. Nichols in
Current site
Google Scholar
PubMed
Close
,
D. I. Cooper Experimental Atmospheric/Climate Physics, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by D. I. Cooper in
Current site
Google Scholar
PubMed
Close
,
L. E. Hipps Department of Plants, Soils and Biometeorology, Utah State University, Logan, Utah

Search for other papers by L. E. Hipps in
Current site
Google Scholar
PubMed
Close
,
W. P. Kustas Department of Agriculture, Hydrology and Remote Sensing Laboratory, Beltsville, Maryland

Search for other papers by W. P. Kustas in
Current site
Google Scholar
PubMed
Close
, and
J. H. Prueger Department of Agriculture, National Soil Tilth Laboratory, Ames, Iowa

Search for other papers by J. H. Prueger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Soil Moisture–Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high-time-resolution continuous record of the boundary layer height at the edge between a soybean and cornfield. The height and thickness of the entrainment zone are used to estimate the surface sensible heat flux using the Batchvarova–Gryning boundary layer model. Flux estimates made over 6 days are compared to conventional eddy correlation measurements. The calculated values of the sensible heat flux were found to be well correlated (R2 = 0.79, with a slope of 0.95) when compared to eddy correlation measurements in the area. The standard error of the flux estimates was 21.4 W m−2 (31% rms difference between this method and surface measurements), which is somewhat higher than a predicted uncertainty of 16%. The major sources of error were from the estimates of the vertical potential temperature gradient and an assumption that the entrainment parameter A was equal to the ratio of the entrainment flux and the surface heat flux.

Corresponding author address: William Eichinger, Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242. Email: william-eichinger@uiowa.edu

Abstract

The Soil Moisture–Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high-time-resolution continuous record of the boundary layer height at the edge between a soybean and cornfield. The height and thickness of the entrainment zone are used to estimate the surface sensible heat flux using the Batchvarova–Gryning boundary layer model. Flux estimates made over 6 days are compared to conventional eddy correlation measurements. The calculated values of the sensible heat flux were found to be well correlated (R2 = 0.79, with a slope of 0.95) when compared to eddy correlation measurements in the area. The standard error of the flux estimates was 21.4 W m−2 (31% rms difference between this method and surface measurements), which is somewhat higher than a predicted uncertainty of 16%. The major sources of error were from the estimates of the vertical potential temperature gradient and an assumption that the entrainment parameter A was equal to the ratio of the entrainment flux and the surface heat flux.

Corresponding author address: William Eichinger, Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242. Email: william-eichinger@uiowa.edu

Save
  • Anderson, M. C., Norman J. M. , Diak G. R. , and Kustas W. P. , 1997: A two-source time integrated model for estimating surface fluxes for thermal infrared satellite observations. Remote Sens. Environ., 60 , 195216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Kustas W. P. , Li F. , Prueger J. H. , and Mecikalski J. R. , 2005: Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX. J. Hydrometeor., 6 , 892909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 1999: Entrainment results including advection and case studies from the flatland boundary layer experiments. J. Geophys. Res., 104 , 3094730963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchvarova, E., and Gryning S. , 1991: Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteor., 56 , 261274.

  • Batchvarova, E., and Gryning S. , 1994: Applied model for the height of the daytime mixed layer and the entrainment zone. Bound.-Layer Meteor., 71 , 311323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Betts, A. K., and Ball F. K. , 1994: Budget analysis of FIFE 1987 sonde data. J. Geophys. Res., 99 , 36553666.

  • Betts, A. K., and Ball F. K. , 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100 , D12,. 2567925693.

  • Betts, A. K., and Barr A. G. , 1996: First International Satellite Land Surface Climatology Field Experiment 1987 sonde budget revisited. J. Geophys. Res., 101 , 2328523288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball F. K. , 1998: FIFE surface climate and site-averaged sata set 1987–1989. J. Atmos. Sci., 55 , 10911108.

  • Betts, A. K., Desjardins R. L. , MacPherson J. I. , and Kelly R. D. , 1990: Boundary layer heat and moisture budgets from FIFE. Bound.-Layer Meteor., 50 , 109137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Desjardins R. L. , and MacPherson J. I. , 1992: Budget analysis of the boundary layer grid flights during FIFE 1987. J. Geophys. Res., 97 , 1853318546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and Kustas W. P. , 1987: Surface water vapor and momentum fluxes under unstable conditions from a rugged-complex area. J. Atmos. Sci., 44 , 421431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and Parlange M. B. , 1992: The unstable surface layer above forest: Regional evaporation and heat flux. Water Resour. Res., 28 , 31293134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caparrini, F., Catelli F. , and Entekhabi-Prueger D. , 2004: Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J. Hydrometeor., 5 , 145159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, D. J., 1973: The development of a dry inversion-capped convectively unstable boundary layer. Quart. J. Roy. Meteor. Soc., 99 , 450467.

  • Coleman, H. W., and Steele W. G. , 1989: Experimentation and Uncertainty Analysis for Engineers. John Wiley & Sons, 275 pp.

  • Culf, A. D., 1992: An application of simple models to Sahelian convective boundary-layer growth. Bound.-Layer Meteor., 58 , 118.

  • Davies, E. R., 1992: A skimming technique for fast accurate edge detection. Signal Process., 26 , 116.

  • Davies, K. J., Lenschow D. H. , Oncley S. P. , Kiemle C. , Ehret G. , Giez A. , and Mann J. , 1997: Role of entrainment in surface-atmosphere interaction over the boreal forest. J. Geophys. Res., 102 , D24,. 2921929230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., Willis G. E. , and Stockton B. H. , 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech., 100 , 4164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., 1983: A model for the Priestly–Taylor α. J. Climate Appl. Meteor., 22 , 572578.

  • Denmead, A. T., Raupach M. R. , Dunin F. X. , Cleugh H. A. , and Leuning R. , 1996: Boundary layer budgets for regional estimates of a scalar. Global Change Biol., 2 , 255264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23 , 283306.

  • Grossman, R. L., 1992: Convective boundary layer budgets of moisture and sensible heat over and unstressed prairie. J. Geophys. Res., 97 , 1842518438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and Batchvarova E. , 1990: Analytical model for the growth of coastal internal boundary layer during onshore flow. Quart. J. Roy. Meteor. Soc., 116 , 187203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and Batchvarova E. , 1994: Mixed-layer parameterization of the depth of the entrainment zone above the daytime mixed-layer. Quart. J. Roy. Meteor. Soc., 120 , 4758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and Batchvarova E. , 1996: A model for the height of the internal boundary layer over an area with an irregular coastline. Bound.-Layer Meteor., 78 , 405413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hipps, L. E., Swiatek E. , and Kustas W. P. , 1994: Interactions between regional surface fluxes and the atmospheric boundary layer over a heterogeneous watershed. Water Resour. Res., 30 , 13871392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Källstrand, B., and Smedman A. S. , 1997: A case study of the near-neutral coastal internal boundary layer growth: Aircraft measurements compared with different model estimates. Bound.-Layer Meteor., 85 , 133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows, Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Kovalev, V., and Eichinger W. , 2004: Elastic Lidar: Theory, Practice and Analysis Methods. Wiley and Sons, 615 pp.

  • Kustas, W. P., Hipps L. E. , and Humes K. S. , 1994: Calculation of basin-scale surface fluxes by combining remotely sensed data and atmospheric properties in a semiarid landscape. Bound.-Layer Meteor., 73 , 105123.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Hatfield J. L. , and Prueger J. H. , 2005: The Soil Moisture–Atmosphere Coupling Experiment (SMACEX): Background, hydrometeorlogical conditions, and preliminary findings. J. Hydrometeor., 6 , 791804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laubach, J., and Fritsch H. , 2002: Convective boundary layer budgets derived from aircraft data. Agric. For. Meteor., 111 , 237263.

  • LeMone, M. A., and Coauthors, 2002: Cases-97: Late-morning warming and moistening of the convective boundary layer over the Walnut River Watershed. Bound.-Layer Meteor., 104 , 152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, P. G., Grelle A. , Lindroth A. , Molder M. , Jarvis P. G. , Kruijt B. , and Moncrieff J. B. , 1999: Regional-scale CO2 fluxes over central Sweden by a boundary layer budget method. Agric. For. Meteor., 98–99 , 169180.

    • Search Google Scholar
    • Export Citation
  • Lhomme, J-P., Monteny B. , and Bessemoulin P. , 1997: Inferring regional surface fluxes from convective boundary layer characteristics in a Sahelian environment. Water Resour. Res., 33 , 25632569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Lenschow D. H. , 1976: Growth dynamics of the convectively mixed layer. J. Atmos. Sci., 33 , 4151.

  • Margulis, S., and Entekhabi D. , 2003: Variational assimilation of radiometric temperature and reference level micrometeorology into a model of the atmospheric boundary layer and land surface. Mon. Wea. Rev., 131 , 12721288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S., and Entekhabi D. , 2004: Boundary layer entrainment estimation through assimilation of radiosonde and micrometeorological data into a mixed layer model. Bound.-Layer Meteor., 110 , 405433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G., 1989: Regional interaction between canopies and atmosphere. Plant Canopies: Their Growth, Form and Function, G. Russel, B. Marshall, and P. Jarvis, Eds., Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G., and Spriggs T. W. , 1986: A mixed-layer model for regional evaporation. Bound.-Layer Meteor., 34 , 243262.

  • Mecikalski, J. R., Diak G. R. , Anderson M. C. , and Norman J. M. , 1999: Estimating fluxes on continental scales using remotely sensed data in an atmospheric–land exchange model. J. Appl. Meteor., 38 , 13521369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melas, D., and Kambezidis H. , 1992: The depth of the internal boundary layer over an urban area under sea breeze conditions. Bound.-Layer Meteor., 61 , 247274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., Spinhirne J. D. , Chou S. H. , and Palm S. P. , 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24 , 806821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munley, W. G., and Hipps L. E. , 1991: Estimation of regional evaporation for a tallgrass prairie from measurements of properties of the atmospheric boundary layer. Water Resour. Res., 27 , 225230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and LeMone M. A. , 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37 , 20512067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parlange, M. B., and Brutsaert W. , 1993: Regional shear stress of broken forest from radiosonde wind profiles in the unstable surface layer. Bound.-Layer Meteor., 64 , 355368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1991: Vegetation atmosphere interaction in homogeneous and heterogeneous terrain: Some implications of mixed-layer dynamics. Vegetation, 91 , 105120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, R. A., Denmead O. T. , and Dunin F. X. , 1992: Challenges in linking atmospheric CO2 concentrations to fluxes at local and regional scales. Aust. J. Bot., 40 , 697716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeda, M. S., 1979: A bulk model for the atmospheric planetary boundary layer. Bound.-Layer Meteor., 17 , 411427.

  • Steyn, D. G., Baldi M. , and Hoff R. , 1999: The detection of mixed layer depth from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16 , 953959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1976: Mixed layer depth model based on turbulent energetics. J. Atmos. Sci., 33 , 12681278.

  • Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Sugita, M., and Brutsaert W. , 1990: Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements. Water Resour. Res., 26 , 29372944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugita, M., Hiyama T. , and Kayane I. , 1997: How regional are the regional fluxes obtained from lower atmospheric boundary layer data? Water Resour. Res., 33 , 14371445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swiatek, E., 1992: Estimating regional surface fluxes from measured properties of the atmospheric boundary layer in a semiarid ecosystem. M.S. thesis, Plants, Soils, and Biometeorology Department, Utah State University, 104 pp.

  • Taylor, J. R., 1982: An Introduction to Error Analysis. University Science Books, 327 pp.

  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30 , 558567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106 , 85100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., Harris R. C. , and Kaplan W. A. , 1988: Carbon dioxide in the atmosphere over the Amazon basin. J. Geophys. Res., 93 , 13771387.

  • Zeman, O., and Tennekes H. , 1977: Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. J. Atmos. Sci., 34 , 111123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1975: Comments on “A model for the dynamics of the inversion above a convective boundary layer.”. J. Atmos. Sci., 32 , 991992.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 135 60
PDF Downloads 95 19 2