• Basist, A., , Williams C. , , Grody N. C. , , Ross T. F. , , Shen S. , , Chang A. T. C. , , Ferraro R. , , and Menne M. J. , 2001: Using the Special Sensor Microwave Imager to monitor surface wetness. J. Hydrometer., 2 , 297308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., , Schmugge T. J. , , Chang A. , , and Newton R. W. , 1979: Effect of surface roughness on microwave emission from soils. J. Geophys. Res., 84 , 56995706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., , Tucker C. J. , , Golus R. E. , , and Newcomb W. W. , 1987: Monitoring vegetation using Nimbus-7 scanning multichannel microwave radiometer data. Int. J. Remote Sens., 8 , 533538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Lindau R. , 1999: The impact of SSM/I antenna gain function on land surface parameter retrieval. Geophys. Res. Lett., 26 , 34813484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Jackson T. J. , 2001: Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the Southern Great Plains hydrology experiment 1997. J. Hydrometer., 2 , 181192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2004: The Hydrosphere State (Hydros) mission: An Earth System Pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens., 42 , 21842195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felde, G. W., 1998: The effect of soil moisture on the 37GHz microwave polarization difference index (MPDI). Int. J. Remote Sens., 19 , 10551078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallikainen, M. T., , Ulaby F. T. , , Dobson M. C. , , El-Rayes M. A. , , and Wu L. K. , 1985: Microwave dielectric behavior of wet soil. Part I: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens., 23 , 2534.

    • Search Google Scholar
    • Export Citation
  • Hiltbrunner, D., 1998: Land surface temperature and microwave emissivity from SSM/I data. Ph.D. dissertation, University of Bern, 176 pp.

  • Hornbuckle, B. K., , and England A. W. , 2004: Modeling 1.4 GHz land surface brightness: What measure of vegetation temperature should be used? Proc. of the Int. Geoscience and Remote Sensing Symp., Vol. I, Anchorage, AK, IEEE, Catalog No. 04CH37612C, 344–347.

  • Jackson, T. J., 1997: Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour. Res., 33 , 14751484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 2001: Multiple resolution analysis of L band brightness temperature for soil moisture. IEEE Trans. Geosci. Remote Sens., 39 , 151164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , and Schmugge T. J. , 1991: Vegetation on the microwave emission of soil. Remote Sens. Environ., 36 , 203212.

  • Jackson, T. J., , Le Vine D. M. , , Swift C. T. , , Schmugge T. J. , , and Schiebe F. R. , 1995: Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita’92. Remote Sens. Environ., 53 , 2737.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Le Vine D. M. , , Hsu A. Y. , , Oldak A. , , Starks P. J. , , Swift C. T. , , Isham J. D. , , and Haken M. , 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens., 37 , 21362151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Hsu A. Y. , , and O’Neill P. E. , 2002: Surface soil moisture retrieval and mapping using high-frequency microwave satellite observations in the Southern Great Plains. J. Hydrometer., 3 , 688699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Chen D. Y. , , Cosh M. , , Li F. Q. , , Anderson M. , , Walthall C. , , Doriaswamy P. , , and Hunt E. R. , 2004: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ., 92 , 475482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judge, J., , Galantowicz J. F. , , England A. W. , , and Dahl P. , 1997: Freeze/thaw classification for prairie soils using SSM/I radiobrightnesses. IEEE Trans. Geosci. Remote Sens., 35 , 827832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., , Waldteufel P. , , Wigneron J. P. , , Martinuzzi J. M. , , Font J. , , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koblinsky, C. J., , Hildebrand P. , , LeVine D. , , Pellerano F. , , Chao Y. , , Wilson W. , , Yueh S. , , and Lagerloef G. , 2003: Sea surface salinity from space: Science goals and measurement approach. Radio Sci., 38 .8064, doi:10.1029/2001RS002584.

    • Search Google Scholar
    • Export Citation
  • Koike, T., , Njoku E. G. , , Jackson T. J. , , and Paloscia S. , 2000: Soil moisture algorithm development and validation for the ADEOS/AMSR. Proc. of the Int. Geoscience and Remote Sensing Symp., Vol. III, Honolulu, HI, IEEE, 1253–1255.

  • Kustas, W. P., , Jackson T. J. , , Prueger J. H. , , Hatfield J. L. , , and Anderson M. C. , 2003: Remote sensing field experiments evaluate retrieval algorithms and land-atmosphere modeling. Eos, Trans. Amer. Geophys. Union, 84 , 491493.

    • Search Google Scholar
    • Export Citation
  • Lakshmi, V., 1998: Special sensor microwave imager data in field experiments: FIFE-1987. Int. J. Remote Sens., 19 , 481505.

  • Li, L., , Njoku E. G. , , Im E. , , Chang P. , , and Germain K. S. , 2004: A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42 , 380390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., , and White R. A. , 1998: A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interactions 2. [Available online at http://EarthInteractions.org.].

    • Crossref
    • Export Citation
  • Njoku, E. G., , and Li L. , 1999: Retrieval of land surface parameters using passive microwave measurements at 6 to 18 GHz. IEEE Trans. Geosci. Remote Sens., 37 , 7993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , Jackson T. J. , , Lakshmi V. , , Chan T. K. , , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 215229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owe, M., , de Jeu R. , , and Walker J. , 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39 , 16431654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paloscia, S., , Macelloni G. , , Santi E. , , and Koike T. , 2001: A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I. IEEE Trans. Geosci. Remote Sens., 39 , 16551661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmugge, T. J., 1980: Effect of texture on microwave emission from soil. IEEE Trans. Geosci. Remote Sens., 18 , 353361.

  • Schmugge, T. J., , Gloerson P. , , Wilheit T. , , and Geiger F. , 1974: Remote sensing of soil moisture with microwave radiometer. J. Geophys. Res., 79 , 317323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, W. L., , Wang J. R. , , and Doraiswamy P. C. , 1993: Relationship between satellite microwave radiometric data, antecedent precipitation index, and regional soil moisture. Int. J. Remote Sens., 14 , 24832500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , Moore R. K. , , and Fung A. K. , 1982: Radar Remote Sensing and Emission Theory. Vol. II, Microwave Remote Sensing: Active and Passive, Addison-Wesley Publishing, 608 pp.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , Moore R. K. , , and Fung A. K. , 1986: From Theory to Application. Vol. III, Microwave Remote Sensing: Active and Passive, Addison-Wesley Publishing, 1098 pp.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., , Robock A. , , Qiu S. , , Entin J. K. , , Owe M. , , Choudhury B. J. , , Hollinger S. E. , , and Njoku E. G. , 1999: Satellite remote sensing of soil moisture in Illinois, United States. J. Geophys. Res., 104 , D4,. 41454168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. R., 1985: Effect of vegetation on soil moisture sensing from an orbiting radiometer. Remote Sens. Environ., 17 , 141151.

  • Wang, J. R., , and Schmugge T. J. , 1980: An empirical model for the complex dielectric permittivity of soils as function of water content. IEEE Trans. Geosci. Remote Sens., 18 , 288302.

    • Search Google Scholar
    • Export Citation
  • Wen, J., , and Su Z. B. , 2004: An analytical algorithm on the determination of LAI from TRRM/TMI data. Int. J. Remote Sens., 25 , 12231234.

  • Wen, J., , Su Z. B. , , and Ma Y. M. , 2003: Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data. J. Geophys. Res., 108 .4038, doi:10.1029/2002JD002176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 7
PDF Downloads 47 47 2

Retrieval of Soil Moisture and Vegetation Water Content Using SSM/I Data over a Corn and Soybean Region

View More View Less
  • 1 Hydrology and Remote Sensing Laboratory, ARS, USDA, Beltsville, Maryland
  • | 2 Wageningen University and Research Centre, ALTERRA Green World Research, Wageningen, Netherlands
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The potential for soil moisture and vegetation water content retrieval using Special Sensor Microwave Imager (SSM/I) brightness temperature over a corn and soybean field region was analyzed and assessed using datasets from the Soil Moisture Experiment 2002 (SMEX02). Soil moisture retrieval was performed using a dual-polarization 19.4-GHz data algorithm that requires the specification of two vegetation parameters—single scattering albedo and vegetation water content. Single scattering albedo was estimated using published values. A method for estimating the vegetation water content from the microwave polarization index using SSM/I 37.0-GHz data was developed for the region using extensive datasets developed as part of SMEX02. Analyses indicated that the sensitivity of the brightness temperature to soil moisture decreased as vegetation water content increased. However, there was evidence that SSM/I brightness temperatures changed in response to soil moisture increases resulting from rainfall during the later stages of crop growth. This was partly attributed to the lower soil and vegetation thermal temperatures that typically followed a rainfall. Comparisons between experimentally measured volumetric soil moisture and SSM/I-retrieved soil moisture indicated that soil moisture retrieval was feasible using SSM/I data, but the accuracy highly depended upon the levels of vegetation and atmospheric precipitable water; the standard error of estimate over the 3-week study period was 5.49%. The potential for using this approach on a larger scale was demonstrated by mapping the state of Iowa. Results of this investigation provide new insights on how one might operationally correct for vegetation effects using high-frequency microwave observations.

Corresponding author address: Thomas J. Jackson, USDA, ARS, Hydrology and Remote Sensing Lab, 104 Bldg. 007, BARC-West, Beltsville, MD 20705. Email: tjackson@hydrolab.arsusda.gov

Abstract

The potential for soil moisture and vegetation water content retrieval using Special Sensor Microwave Imager (SSM/I) brightness temperature over a corn and soybean field region was analyzed and assessed using datasets from the Soil Moisture Experiment 2002 (SMEX02). Soil moisture retrieval was performed using a dual-polarization 19.4-GHz data algorithm that requires the specification of two vegetation parameters—single scattering albedo and vegetation water content. Single scattering albedo was estimated using published values. A method for estimating the vegetation water content from the microwave polarization index using SSM/I 37.0-GHz data was developed for the region using extensive datasets developed as part of SMEX02. Analyses indicated that the sensitivity of the brightness temperature to soil moisture decreased as vegetation water content increased. However, there was evidence that SSM/I brightness temperatures changed in response to soil moisture increases resulting from rainfall during the later stages of crop growth. This was partly attributed to the lower soil and vegetation thermal temperatures that typically followed a rainfall. Comparisons between experimentally measured volumetric soil moisture and SSM/I-retrieved soil moisture indicated that soil moisture retrieval was feasible using SSM/I data, but the accuracy highly depended upon the levels of vegetation and atmospheric precipitable water; the standard error of estimate over the 3-week study period was 5.49%. The potential for using this approach on a larger scale was demonstrated by mapping the state of Iowa. Results of this investigation provide new insights on how one might operationally correct for vegetation effects using high-frequency microwave observations.

Corresponding author address: Thomas J. Jackson, USDA, ARS, Hydrology and Remote Sensing Lab, 104 Bldg. 007, BARC-West, Beltsville, MD 20705. Email: tjackson@hydrolab.arsusda.gov

Save