• Anderson, M. C., , Neale C. C. M. , , Li F. , , Norman J. , , Kustas W. P. , , Jayanthi H. , , and Chavez J. L. , 2004: Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens. Environ., 92 , 447464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baret, F. J., , Clevers G. P. W. , , and Steven M. D. , 1995: The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ., 54 , 141151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindlish, R., 2004: SMEX02 aircraft Polarimetric Scanning Radiometer (PSR) Tb data. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/docs/daac/nsidc0205_smex_psr.gd.html.].

    • Search Google Scholar
    • Export Citation
  • Chang, S. L., , Kong J. A. , , and Tsang L. , 1980: Radiative transfer theory for passive microwave remote sensing of a two-layer random medium with cylindrical structures. J. Appl. Phys., 51 , 55885593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., , Schmugge T. J. , , Chang A. , , and Newton R. W. , 1979: Effect of surface roughness on the microwave emission from soils. J. Geophys. Res., 84 , 56995706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 .8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Cosh, M. H., , Jackson T. J. , , Bindlish R. , , and Prueger J. H. , 2004: Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sens. Environ., 92 , 427435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosson, W. L., , Laymon C. A. , , Inguva R. , , and Schamschula M. P. , 2002: Assimilating remote sensing data in a surface flux-soil moisture model. Hydrol. Process., 16 , 16451662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , and Wood E. F. , 1999: Multi-scale dynamics of soil moisture variability observed during SGP’97. Geophys. Res. Lett., 26 , 34853488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land-surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , Drusch M. , , and Wood E. F. , 2001: An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval. IEEE Trans. Geosci. Remote Sens., 39 , 16221631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Jackson T. J. , 2001: Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the Southern Great Plains Hydrology Experiment 1997. J. Hydrometeor., 2 , 181192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , Gao H. , , and Thiele A. , 2004: Soil moisture retrieval during the Southern Great Plains Hydrology Experiment 1999: A comparison between experimental remote sensing data and operational products. Water Resour. Res., 40 .W02504, doi:10.1029/2003WR002441.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , and Rodriguez-Iturbe I. , 1994: Analytical framework for the characterization of the space-time variability of soil-moisture. Adv. Water Resour., 17 , 3545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entin, J. K., and Coauthors, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105 , D9,. 1186511877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , and Wood E. F. , 1995: Effects of spatial variability and scale on areally averaged evapotranspiration. Water Resour. Res., 31 , 699712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrazzoli, P., , Guerriero L. , , and Wigneron J. P. , 2002: Simulating L-band emission of forests in view of future satellite applications. IEEE Trans. Geosci. Remote Sens.,, 40 , 27002708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., , Wood E. F. , , Drusch M. , , Crow W. , , and Jackson T. J. , 2004: Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99. J. Hydrometeor., 5 , 4963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grayson, R. B., , and Blöschl G. , 2000: Spatial Patterns in Catchment Hydrology. Cambridge University Press, 432 pp.

  • Huete, A., , Justice C. , , and Liu H. , 1994: Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ., 49 , 224234.

  • Jackson, T. J., , and Schmugge T. J. , 1991: Vegetation effects on the microwave emission of soils. Remote Sens. Environ., 36 , 203212.

  • Jackson, T. J., , and Cosh M. H. , 2003: SMEX02 watershed soil moisture data, Walnut Creek, Iowa. National Snow and Ice Data Center, Boulder, Colorado, Digital Media. [Available online at http://nsidc.org/data/nsidc-0143.html.].

  • Jackson, T. J., , Levine D. M. , , Griffis A. J. , , Goodrich D. C. , , Schmugge T. J. , , Swift C. T. , , and Oneill P. E. , 1993: Soil moisture and rainfall estimation over a semi-arid environment with the ESTAR microwave radiometer. IEEE Trans. Geosci. Remote Sens., 31 , 836841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Le Vine D. M. , , Swift C. T. , , Schmugge T. J. , , and Schiebe F. R. , 1995: Large-area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita 92. Remote Sens. Environ., 54 , 2737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Levine D. M. , , Hsu A. Y. , , Oldak A. , , Starks P. J. , , Swift C. T. , , Isham J. D. , , and Haken M. , 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens., 37 , 21362151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Gasiewski A. J. , , Oldak A. , , Klein M. , , Njoku E. G. , , Yevgrafov A. , , Christiani S. , , and Bindlish R. , 2002: Soil moisture retrieval using the C-band polarimetric scanning radiometer during the Southern Great Plains 1999 Experiment. IEEE Trans. Geosci. Remote Sens., 40 , 21512161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , Chen D. , , Cosh M. H. , , Li F. , , Anderson M. C. , , Walthall C. , , Doriaswamy P. , , and Hunt E. R. , 2004: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ., 92 , 475482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y., , and Njoku E. G. , 1990: A semi-empirical model for interpreting microwave emission from semi-arid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sens., 28 , 384393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, G., , and Barros A. P. , 2002: Space-time characterization of soil moisture from passive microwave remotely sensed imagery and ancillary data. Remote Sens. Environ., 81 , 393403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Vine, D. M., , Jackson T. J. , , Swift C. T. , , Haken M. , , and Bidwell S. W. , 2001: ESTAR measurements during the Southern Great Plains experiment (SGP99). IEEE Trans. Geosci. Remote Sens., 39 , 16801685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., , Njoku E. G. , , Im E. , , Chang P. S. , , and Germain K. S. , 2004: A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42 , 380390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99 , D7,. 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., , Wood E. F. , , and Gao H. , 2005: Initial soil moisture retrievals from AMSR-E: Large scale comparisons with SMEX02 field observations and rainfall patterns over Iowa. Geophys. Res. Lett.,, 32 .L06403, doi:10.1029/2004GL021222.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004 The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 D07S90, doi:10.1029/2003JD003823.

    • Crossref
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83 , 214231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , Jackson T. J. , , Lakshmi V. , , Chan T. K. , , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 215229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owe, M., , de Jeu R. , , and Walker J. , 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization index. IEEE Trans. Geosci. Remote Sens., 39 , 16431654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pampaloni, P., , and Paloscia S. , 1986: Microwave emission and plant water content: A comparison between field measurements and theory. IEEE Trans. Geosci. Remote Sens., GE-24 , 900905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepmeier, J. R., , and Gasiewski A. J. , 2001: High-resolution passive microwave polarimetric mapping of ocean surface wind vector fields. IEEE Trans. Geosci. Remote Sens., 39 , 606622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , McLaughlin D. B. , , and Entekhabi D. , 2001: Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens., 39 , 17081718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108 .8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., , Chao B. F. , , Au A. Y. , , Kimball J. , , and McDonald K. , 2005: Global biomass variation and its geodynamic effects, 1982-1998. Earth Interations, 9 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American land data assimilation system (NLDAS). J. Geophys. Res., 109 .D01S90, doi:10.1029/ 2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T. J., , Kustas W. P. , , Ritchie J. C. , , Jackson T. J. , , and Rango A. , 2002: Remote sensing in hydrology. Adv. Water Resour.,, 25 , 13671385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , Razani M. , , and Dobson M. C. , 1983: Efects of vegetation cover on the microwave radiomeric sensitivity to soil moisture. IEEE Trans. Geosci. Remote Sens., GE-21 , 5161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., , Robock A. , , Speranskaya N. A. , , and Schlosser A. , 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , D3,. 71637174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., , and Houser P. R. , 2001: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106 , D11,. 1176111774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., , Zhang Y. , , Zhang Q. , , and Li Z-L. , 2002: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ.,, 83 , 163180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Western, A. W., , Grayson R. B. , , and Green T. R. , 1999: The Tarrawarra project: High resolution spatial measurement, modelling and analysis of soil moisture and hydrological response. Hydrol. Process., 13 , 633652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Western, A. W., , Blöschl G. , , and Grayson R. B. , 2001: Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour. Res., 37 , 8397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. J., , Western A. W. , , and Grayson R. B. , 2004: Identifying and quantifying sources of variability in temporal and spatial soil moisture observations. Water Resour. Res., 40 .W02507, doi:10.1029/2003WR002306.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 6
PDF Downloads 34 34 0

Evaluation of AMSR-E-Derived Soil Moisture Retrievals Using Ground-Based and PSR Airborne Data during SMEX02

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A Land Surface Microwave Emission Model (LSMEM) is used to derive soil moisture estimates over Iowa during the Soil Moisture Experiment 2002 (SMEX02) field campaign, using brightness temperature data from the Advanced Microwave Sounding Radiometer (AMSR)-E satellite. Spatial distributions of the near-surface soil moisture are produced using the LSMEM, with data from the North American Land Data Assimilation System (NLDAS), vegetation and land surface parameters estimated through recent Moderate Imaging Spectroradiometer (MODIS) land surface products, and standard soil datasets. To assess the value of soil moisture estimates from the 10.7-GHz X-band sensor on the AMSR-E instrument, retrievals are evaluated against ground-based sampling and soil moisture estimates from the airborne Polarimetric Scanning Radiometer (PSR) operating at C band. The PSR offers high-resolution detail of the soil moisture distribution, which can be used to analyze heterogeneity within the scale of the AMSR-E pixel. Preliminary analysis indicates that retrievals from the AMSR-E instrument at 10.7 GHz using the LSMEM are surprisingly robust, with accuracies within 3% vol/vol compared with in situ samples. Results from these AMSR-E comparisons also indicate potential in determining soil moisture patterns over regional scales, even in the presence of vegetation. Assessment of soil moisture determined through local-scale sampling within the larger-scale AMSR-E footprint reveals a consistent level of agreement over a range of meteorological and surface conditions, offering promise for improved land surface hydrometeorological characterization.

Corresponding author address: Dr. Matthew McCabe, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: mmccabe@hydrology.princeton.edu

Abstract

A Land Surface Microwave Emission Model (LSMEM) is used to derive soil moisture estimates over Iowa during the Soil Moisture Experiment 2002 (SMEX02) field campaign, using brightness temperature data from the Advanced Microwave Sounding Radiometer (AMSR)-E satellite. Spatial distributions of the near-surface soil moisture are produced using the LSMEM, with data from the North American Land Data Assimilation System (NLDAS), vegetation and land surface parameters estimated through recent Moderate Imaging Spectroradiometer (MODIS) land surface products, and standard soil datasets. To assess the value of soil moisture estimates from the 10.7-GHz X-band sensor on the AMSR-E instrument, retrievals are evaluated against ground-based sampling and soil moisture estimates from the airborne Polarimetric Scanning Radiometer (PSR) operating at C band. The PSR offers high-resolution detail of the soil moisture distribution, which can be used to analyze heterogeneity within the scale of the AMSR-E pixel. Preliminary analysis indicates that retrievals from the AMSR-E instrument at 10.7 GHz using the LSMEM are surprisingly robust, with accuracies within 3% vol/vol compared with in situ samples. Results from these AMSR-E comparisons also indicate potential in determining soil moisture patterns over regional scales, even in the presence of vegetation. Assessment of soil moisture determined through local-scale sampling within the larger-scale AMSR-E footprint reveals a consistent level of agreement over a range of meteorological and surface conditions, offering promise for improved land surface hydrometeorological characterization.

Corresponding author address: Dr. Matthew McCabe, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: mmccabe@hydrology.princeton.edu

Save