Reproducibility of Seasonal Land Surface Climate

Thomas J. Phillips Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Thomas J. Phillips in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the “reproducibility” of continental climate for different initial conditions, spatiotemporal correlations are computed across paired realizations of 11 model land surface variables in which the seasonal cycle is either included or excluded—the former case being pertinent to climate simulation and the latter to seasonal prediction.

It is found that the land surface variables that include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Niño–Southern Oscillation. However, the overall degree of reproducibility depends on the particular land surface anomaly considered. It is also shown that the predictability of a land surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability metrics. Implications of these results for climate model intercomparison projects and for operational forecasts of seasonal continental climate also are elaborated.

Corresponding author address: Thomas J. Phillips, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, L-103, Livermore, CA 94551. Email: phillips14@llnl.gov

Abstract

In this study, the sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the “reproducibility” of continental climate for different initial conditions, spatiotemporal correlations are computed across paired realizations of 11 model land surface variables in which the seasonal cycle is either included or excluded—the former case being pertinent to climate simulation and the latter to seasonal prediction.

It is found that the land surface variables that include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Niño–Southern Oscillation. However, the overall degree of reproducibility depends on the particular land surface anomaly considered. It is also shown that the predictability of a land surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability metrics. Implications of these results for climate model intercomparison projects and for operational forecasts of seasonal continental climate also are elaborated.

Corresponding author address: Thomas J. Phillips, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, L-103, Livermore, CA 94551. Email: phillips14@llnl.gov

Save
  • Anderson, J. L., and Stern W. F. , 1996: Evaluating the potential predictive utility of ensemble forecasts. J. Climate, 9 , 260269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., Van den Dool H. , Barnston A. , Chen W. , Stern W. , and Ploshay J. , 1999: Present-day capabilities of numerical and statistical models for atmospheric extratropical seasonal simulation and prediction. Bull. Amer. Meteor. Soc, 80 , 13491361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1995: Monte Carlo climate forecasting. J. Climate, 8 , 10051022.

  • Barnett, T. P., 1998: Variations in near-global sea level pressure: Another view. J. Climate, 1 , 225230.

  • Barnston, A. G., 1994: Linear statistical short-term climate predictive skill in the Northern Hemisphere. J. Climate, 7 , 15131564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Smith T. M. , 1996: Specification and prediction of global surface temperatures and precipitation from global SST using CCA. J. Climate, 9 , 26602697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , and Miller M. J. , 1996: The anomalous rainfall over the Unites States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev, 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Arpe K. , Roeckner E. , and Schulzweida U. , 1996: Climate predictability experiments with a general circulation model. Climate Dyn, 12 , 261278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Beljaars A. C. M. , 1993: Comparison between the land surface response of the ECMWF model and the FIFE-1987 data. Quart. J. Roy. Meteor. Soc, 119 , 9751001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blondin, C., 1988: Research on land surface parameterization schemes at ECMWF. Proc. Workshop on Parameterisation of Fluxes over Land Surface, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 285–330.

  • Brankovic, C., Palmer T. N. , and Ferranti L. , 1994: Predictability of seasonal atmospheric variations. J. Climate, 7 , 217237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, D. J., 1998: Seasonal forecasting. Quart. J. Roy. Meteor. Soc, 124 , 126.

  • Chen, W. Y., and Van den Dool H. M. , 1997: Atmospheric predictability of seasonal, annual, and decadal climate means and the role of the ENSO cycle: A model study. J. Climate, 10 , 12361254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chervin, R. M., 1986: Interannual variability and seasonal climate predictability. J. Atmos. Sci, 43 , 233251.

  • Cohen, J., and Entekhabi D. , 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett, 26 , 345348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 1994: Monte Carlo climate change forecasts with a global coupled ocean–atmosphere model. Climate Dyn, 10 , 119.

  • Delworth, T. L., and Knutson T. R. , 2000: Simulations of early 20th century global warming. Science, 287 , 22462250.

  • Dirmeyer, P. A., 2001: An evaluation of the strength of land–atmosphere coupling. J. Hydrometeor, 2 , 329344.

  • Dirmeyer, P. A., Fennessy M. J. , and Marx L. , 2001: Near surface boreal summer climate as simulated by three general circulation models. COLA Tech. Rep. 100, Center for Ocean–Land–Atmosphere Studies, Calverton, MD, 36 pp.

  • Dix, M. R., and Hunt B. G. , 1995: Chaotic influences and the problem of deterministic seasonal predictions. Int. J. Climatol, 15 , 729752.

  • Ebisuzaki, W., 1995: The potential predictability in a 14-year GCM simulation. J. Climate, 8 , 27492761.

  • Feddersen, H., Navarra A. , and Ward M. N. , 1999: Reduction of model systematic error by statistical correction for dynamical seasonal prediction. J. Climate, 12 , 19741989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., Slingo J. M. , Palmer T. N. , and Hoskins B. J. , 1999: The effect of land-surface feedbacks on the monsoon circulation. Quart. J. Roy. Meteor. Soc, 125 , 15271550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., Kariko A. P. , and Zheng X. , 2003: A technique for extracting potentially predictable patterns from climate data. Anziam J, 44E .C160–C179. [Also available online at http://anziamj.austms.org.au/V44/CTAC2001/Fred.].

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc, 73 , 19621970.

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc, 80 , 2955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Douville H. , Polcher J. , and Valdes P. J. , 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13 , 30663079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., Kallberg P. , Uppala S. , Noumura A. , Hernandez A. , and Serrano E. , 1997: ERA description. ECMWF Re-Analysis Project Report Series 1, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 77 pp.

  • Griffies, S. M., and Bryan K. , 1997: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn, 13 , 459487.

  • Hansen, J., and Coauthors, 1997: Forcings and chaos in interannual to decadal climate change. J. Geophys. Res, 102 , 2567925720.

  • Henderson-Sellers, A., McGuffie K. , and Pitman A. J. , 1996: The Project for Intercomparison of Land-Surface Parameterization Schemes: 1992 to 1995. Climate Dyn, 12 , 849859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, W., and Halpert M. , 1997: Oceanic and atmospheric anomalies in the global Tropics: The 1997 El Niño. Proc. 22d Annual Climate Diagnostics and Prediction Workshop, Berkeley, CA, NCEP Climate Prediction Center, 1–5.

  • Hoerling, M. P., Ting M. , and Kumar A. , 1995: Zonal flow–stationary wave relationship during El Niño: Implications for seasonal forecasting. J. Climate, 8 , 18381852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Van den Dool H. M. , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9 , 13501362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. H., and Bolvin D. T. , cited. 2004: GPCP version 2 combined precipitation data set documentation. [Available online at http://www1.ncdc.noaa.gov/pub/data/gpcp/v2/documentation/V2_doc.].

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc, 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, R. P., 1997: Relationship of El Niño–Southern Oscillation and Pacific sea surface temperature with rainfall in various regions of the globe. Mon. Wea. Rev, 125 , 17921800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and Diaz H. F. , 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2 , 10691090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor, 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Dirmeyer P. A. , Hahmann A. N. , Ijpelaar R. , Tyahala L. , Cox P. , and Suarez M. J. , 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor, 3 , 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kumar, A., and Hoerling M. P. , 1995: Prospects and limitations of atmospheric GCM climate predictions. Bull. Amer. Meteor. Soc, 76 , 335345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., Hoerling M. P. , Ji M. , Leetmaa A. , and Sardeshmukh P. , 1996: Assessing a GCM's suitability for making seasonal predictions. J. Climate, 9 , 240247.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-averaged estimates of climatic means. J. Appl. Meteor, 12 , 10661069.

  • Liang, X-Z., Sperber K. R. , Wang W-C. , and Samel A. N. , 1997: Predictability of SST forced climate signals in two atmospheric general circulation models. Climate Dyn, 13 , 391415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and Chen W. Y. , 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev, 111 , 4659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1964: The problem of deducing the climate from the governing equations. Tellus, 16 , 111.

  • Louis, J-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor, 17 , 187202.

  • Madden, R., 1981: A quantitative approach to long-range prediction. J. Geophys. Res, 86 , 98179825.

  • Mason, S. J., Goddard L. , Graham N. E. , Yulaeva E. , Sun L. , and Arkin P. A. , 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc, 80 , 18531873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maynard, K., and Polcher J. , 2003: Impact of land-surface processes on the interannual variability of tropical climate in the LMD GCM. Climate Dyn, 20 , 613633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. J., Palmer T. N. , and Swinbank R. , 1989: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys, 40 , 84109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. J., Beljaars A. C. M. , and Palmer T. N. , 1992: The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J. Climate, 5 , 418434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J-J., 1991: Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res, 96 , 91219132.

  • New, M., Lister D. , Hulme M. , and Makin I. , 2002: A high-resolution data set of surface climate over global land areas. Climate Res, 21 , 125.

  • Palmer, T. N., and Anderson D. L. T. , 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc, 120 , 755792.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and Wu W-S. , 1994: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 96–98.

  • Phillips, T. J., 1987: The impact of sampling errors on the perceived response of a climate model to a sea surface temperature anomaly. Atmos.–Ocean, 25 , 177196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., 1992: An application of a simple coupled ocean–atmosphere model to the study of seasonal climate prediction. J. Climate, 5 , 10781096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., 1994: A summary documentation of the AMIP models. PCMDI Rep. 18, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA, 346 pp. [Also available online at http://www-pcmdi.llnl.gov/projects/modeldoc/amip1/.].

  • Phillips, T. J., Henderson-Sellers A. , Irannejad P. , McGuffe K. , and Zhang H. , and the AMIP I Modeling Groups, 2000: Validation of land-surface processes in AMIP models: A pilot study. PCMDI Rep. 63, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA, 20 pp. [Also available online at http://www-pcmdi.llnl.gov/publications/pdf/rpt63.pdf.].

  • Polcher, J., 2000: Proceedings of the GEWEX/INSU International Workshop on Modelling Land-Surface Atmosphere Interactions and Climate Variability. Centre National de la Recherche Scientifique, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R. S., 1983: The climate of the “El Niño” winter of 1982–83—A season of extraordinary climatic anomalies. Mon. Wea. Rev, 111 , 16851706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev, 115 , 16061626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., 1988: Regional validation of general circulation models. Climate Research Unit Publication 9, University of East Anglia, Norwich, United Kingdom, 375 pp.

  • Scott, R., Enterkhabi D. , Koster R. , and Suarez M. , 1997: Timescales of land surface evapotranspiration response. J. Climate, 10 , 559566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc, 81 , 25932606.

  • Slingo, J., 1987: The development and verification of a cloud prediction model for the ECMWF model. Quart. J. Roy. Meteor. Soc, 113 , 899927.

  • Smith, T. M., and Livezey R. E. , 1999: GCM systematic error correction and specification of the seasonal mean Pacific–North America region atmosphere from global SSTs. J. Climate, 12 , 273305.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and Palmer T. N. , 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9 , 27272750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and Participating AMIP Modelling Groups, 1999: Are revised models better models? A skill score assessment of regional interannual variability. Geophys. Res. Lett, 26 , 12671270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, W., and Miyakoda K. , 1995: The feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8 , 10711085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., Walker G. K. , and Lau K-M. , 1999: Mechanisms regulating sea-surface temperatures and deep convection in the Tropics. Geophys. Res. Lett, 26 , 10191022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev, 117 , 17791800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8 , 27162748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and Kumar A. , 1998: A GCM assessment of atmospheric seasonal predictability associated with soil moisture anomalies over North America. J. Geophys. Res, 103 , 2863728646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and Zwiers F. W. , 1999: Interannual variability of precipitation in an ensemble of AMIP climate simulations conducted with the CCC GCM2. J. Climate, 12 , 13221335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., 2000: Determination of the sampling size of AGCM ensemble simulations. Climate Dyn, 16 , 321331.

  • Yang, Z-L., Dickinson R. E. , Henderson-Sellers A. , and Pitman A. J. , 1995: Preliminary study of spin-up processes in land-surface models with the first stage data of PILPS Phase 1(a). J. Geophys. Res, 100 , 1655316578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., and Frederiksen C. S. , 2004: Variability of seasonal-mean fields arising from intraseasonal variability: Part 1, methodology. Climate Dyn, 23 , 177191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1987: A potential predictability study conducted with an atmospheric general circulation model. Mon. Wea. Rev, 115 , 29572974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn, 12 , 825847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and Kharin V. , 1998: Intercomparison of interannual variability and potential predictability: An AMIP diagnostic subproject. Climate Dyn, 14 , 417428.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 34 4
PDF Downloads 29 19 5