Impact of an Exponential Profile of Saturated Hydraulic Conductivity within the ISBA LSM: Simulations over the Rhône Basin

B. Decharme Météo-France/CNRM, Toulouse, France

Search for other papers by B. Decharme in
Current site
Google Scholar
PubMed
Close
,
H. Douville Météo-France/CNRM, Toulouse, France

Search for other papers by H. Douville in
Current site
Google Scholar
PubMed
Close
,
A. Boone Météo-France/CNRM, Toulouse, France

Search for other papers by A. Boone in
Current site
Google Scholar
PubMed
Close
,
F. Habets Météo-France/CNRM, Toulouse, France

Search for other papers by F. Habets in
Current site
Google Scholar
PubMed
Close
, and
J. Noilhan Météo-France/CNRM, Toulouse, France

Search for other papers by J. Noilhan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, ksat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified ksat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations.

Results of the high-resolution experiments show that the exponential profile of ksat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.

Corresponding author address: Bertrand Decharme, Météo-France, CNRM/GMGEC/UDC, 42 ave. G. Coriolis, 31057 Toulouse, France. Email: bertrand.decharme@cnrm.meteo.fr

Abstract

This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, ksat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified ksat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations.

Results of the high-resolution experiments show that the exponential profile of ksat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.

Corresponding author address: Bertrand Decharme, Météo-France, CNRM/GMGEC/UDC, 42 ave. G. Coriolis, 31057 Toulouse, France. Email: bertrand.decharme@cnrm.meteo.fr

Save
  • Ambroise, B., Beven K. , and Freer J. , 1996: Toward a generalization of the TOPMODEL concept: Topographic indices of hydrological similarity. Water Resour. Res, 32 , 21352145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., Crevier L-F. , Mailhot J. , Bilodeau B. , and Delage Y. , 2003: Operational implementation of the ISBA land surface scheme in the Canadian Regional Weather Forecast Model. Part I: Warm season results. J. Hydrometeor, 4 , 352370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 1982a: Macropores and water flow in soils. Water Resour. Res, 18 , 13111325.

  • Beven, K. J., 1982b: On subsurface stormflow: An analysis of response times. Hydrol. Sci. J, 27 , 505521.

  • Beven, K. J., 1984: Infiltration into a class of vertically non-uniform soils. Hydrol. Sci. J, 29 , 425434.

  • Beven, K. J., 1997: TOPMODEL: A critique. Hydrol. Processes, 11 , 10691085.

  • Beven, K. J., and Kirkby M. J. , 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull, 24 , 4369.

  • Boone, A., and Etchevers P. , 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an alpine site. J. Hydrometeor, 2 , 374394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., Calvet J-C. , and Noilhan J. , 1999: Inclusion of a third soil layer in a land surface scheme using the force–restore method. J. Appl. Meteor, 38 , 16111630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., Masson V. , Meyers T. , and Noilhan J. , 2000: The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme. J. Appl. Meteor, 39 , 15441569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-aggregation land surface scheme intercomparison project: An overview. J. Climate, 17 , 187208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braud, I., Noilhan J. , Bessemoulin P. , Mascart P. , Haverkamp R. , and Vauclin M. , 1993: Bare ground surface heat and water exchanges under dry conditions: Observation and parameterization. Bound.-Layer Meteor, 66 , 173200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., and Corey A. T. , 1966: Properties of porous media affecting fluid flow. J. Irrig. Drain. Amer. Soc. Civil Eng, 17 , 187208.

    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., and Coauthors, 1999: MUREX: A land-surface field experiment to study the annual cycle of the energy and water budgets. Ann. Geophys, 17 , 838854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Champeaux, J. L., Acros D. , Bazile E. , Giard D. , Gourtorbe J. P. , Habets F. , Noilhan J. , and Roujean J. L. , 2000: AVHRR-derived vegetation mapping over western Europe for use in numerical weather prediction models. Int. J. Remote Sens, 21 , 11831199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapelon, N., Douville H. , Kosuth P. , and Oki T. , 2002: Off-line simulation of the Amazon water balance: A sensitivity study with implications for GSWP. Climate Dyn, 19 , 141154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and Kumar P. , 2001: Topographic influence on the seasonal and interannual variation of water and energy balance of basin in North America. J. Climate, 14 , 19892014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, R., and Hornberger G. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res, 14 , 601604.

  • Deardorff, J. W., 1977: A parameterization of ground-surface moisture content for use in atmospheric prediction models. J. Appl. Meteor, 16 , 11821185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res, 83 , 18891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delire, C., Calvet J-C. , Noilhan J. , Wright I. , Manzi A. , and Nobre C. , 1997: Physical properties of Amazonian soils: A modeling study using the Anglo-Brazilian Amazonian Climate Observation Study data. J. Geophys. Res, 102 , 3011930133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The Global Soil Wetness Project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc, 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolman, A. J., and Blyth E. M. , 1997: Patch scale aggregation of heterogeneous land surface cover for mesoscale meteorological models. J. Hydrol, 190 , 252268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., Royer J-F. , and Mahfouf J-F. , 1995: A new snow parameterization for the Météo-France climate model. Part I: Validation in stand-alone experiments. Climate Dyn, 12 , 2135.

    • Search Google Scholar
    • Export Citation
  • Duan, J., and Miller N. L. , 1997: A generalized power function for the subsurface transmissivity profile in the TOPMODEL. Water Resour. Res, 33 , 25592562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Koster D. R. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchement-based approach to modeling land surface process in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res, 105 , 823838.

    • Search Google Scholar
    • Export Citation
  • Dümenil, L., and Todini E. , 1992: A rainfall–runoff scheme for use in the Hamburg climate model. Adv. Theor. Hydrol, 9 , 129157.

  • Durand, Y., Brun E. , Méridol L. , Guyomarc'h G. , Lesaffre B. , and Martin E. , 1993: A meteorological estimation of relevant parameters for snow schemes used with atmospheric models. Ann. Glaciol, 18 , 6571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R. L., 2003: Aggregated and distributed modeling of snow cover for a high-latitude basin. Global Planet. Change, 38 , 115120.

  • Etchevers, P., Colaz C. , and Habets F. , 2001: Simulation of the water budget and the rivers flows of the Rhône basin from 1981 to 1994. J. Hydrol, 244 , 6085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Wood E. F. , 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res, 30 , 30613078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaiser, R. N., 1952: Root channels and roots in forest soils. Soil Sci. Soc. Amer. Proc, 16 , 6265.

  • Gautschi, W., 1979: A computational procedure for incomplete GAMMA functions. ACM Trans. Math. Software, 5 , 482489.

  • Gedney, N., and Cox P. M. , 2003: The sensitivity of global climate model simulations to the representation of soil moisture heterogeneity. J. Hydrometeor, 4 , 12651275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., Noilhan J. , Lacarrère P. , and Bessemoulin P. , 1996: Modeling the surface processes and the atmospheric boundary layer for semi-arid conditions. Agric. For. Meteor, 80 , 263287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordano, A., Ed. 1992: CORINE soil erosion risk and important land resources of the European community. EUR Tech. Rep. 13233 EN, 97 pp.

  • Habets, F., and Saulnier G. M. , 2001: Subgrid runoff parameterization. Phys. Chem. Earth, 26 , 455459.

  • Habets, F., and Coauthors, 1999a: The ISBA surface scheme in a macroscale hydrological model applied to the HAPEX-MOBILHY area. Part I: Model and database. J. Hydrol, 217 , 7596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habets, F., Etchevers P. , Golaz C. , Leblois E. , Ledoux E. , Martin E. , Noilhan J. , and Ottlé C. , 1999b: Simulation of the water budget and the river flows of the Rhône basin. J. Geophys. Res, 104 , 145172.

    • Search Google Scholar
    • Export Citation
  • Habets, F., LeMoigne P. , and Noilhan J. , 2004: On the utility of operational precipitation forecasts to served as input for streamflow forecasting. J. Hydrol, 293 , 270288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, R. D., 1977: Water flows in soil and subsoil on a steep forested slope. J. Hydrol, 33 , 3758.

  • Iorgulescu, I., and Musy A. , 1997: Generalization of TOPMODEL for a power law transmissivity profile. Hydrol. Processes, 11 , 13531355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D., Lebas C. , Jamagne M. , Hardy R. , and Draoussin J. , 1995: Base de données géographiques des sols de France à l'échelle 1/1000000 (Geographical Soil Database for France at a scale of 1/1000000). Institut National de Recherches Agronomiques (INRA) Tech. Rep., Orleans, France, 100 pp.

  • Kirkby, M. J., 1997: TOPMODEL: A personal view. Hydrol. Processes, 11 , 10871097.

  • Koster, D. R., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchement-based approach to modeling land surface process in a general circulation model: 1. Model structure. J. Geophys. Res, 105 , 809822.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase-2c Red–Arkansas River Basin experiment: III. Spatial and temporal analysis of water fluxes. Global Planet. Change, 19 , 161180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., and Noilhan J. , 1991: Comparative study of various formulations of evaporation from bare soil using in situ data. J. Appl. Meteor, 30 , 351362.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., and Noilhan J. , 1996: Inclusion of gravitational drainage in a land surface scheme based on the force–restore method. J. Appl. Meteor, 35 , 987992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., Manzi A. O. , Noilhan J. , Giordani H. , and Déqué M. , 1995: The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J. Climate, 8 , 20392057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and ocean circulation. I. The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev, 97 , 739805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzi, A. O., and Planton S. , 1994: Implementation of the ISBA parameterization scheme for land surface processes in a GCM: An annual cycle experiment. J. Hydrol, 155 , 355389.

    • Search Google Scholar
    • Export Citation
  • Montaldo, N., and Albertson J. D. , 2001: On the use of the force–restore SVAT model formulation for stratified soils. J. Hydrometeor, 2 , 571578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. 1, A discussion of principles. J. Hydrol, 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., and Yang Z-L. , 2003: The versatile integrator of surface atmospheric processes (VISA). Part II: Evaluation of three topography-based runoff schemes. Global Planet. Change, 38 , 191208.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev, 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Lacarrère P. , 1995: GCM grid-scale evaporation from mesoscale modeling. J. Climate, 8 , 206223.

  • Noilhan, J., and Mahfouf J-F. , 1996: The ISBA land surface parametrization scheme. Global Planet. Change, 13 , 145159.

  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulnier, G. M., and Datin R. , 2004: Analytical solving of a bias in the TOPMODEL framework water balance. Hydrol. Processes, 18 , 11951218.

  • Seuffert, G., Gross P. , Simmer C. , and Wood E. F. , 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor, 3 , 505523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., Beven K. J. , and Wood E. F. , 1987: On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resour. Res, 23 , 22662278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., Rind D. , Famiglietti J. , and Rosenzweig C. , 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Climate, 10 , 118137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vérant, S., Laval K. , Polcher J. , and De Castro M. , 2004: Sensitivity of the continental hydrological cycle to the spatial resolution over the Iberian Peninsula. J. Hydrometeor, 5 , 267285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrach, K., Stieglitz M. , Mengelkamp H-T. , and Raschke E. , 2002: Advantages of topographically controlled runoff simulation in a soil–vegetation–atmosphere transfer model. J. Hydrometeor, 3 , 131148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolock, D. M., and McCabe G. J. , 2000: Differences in topographic characteristics computed from 100- and 1000m resolution digital elevation model data. Hydrol. Processes, 14 , 9871002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase-2c Red–Arkansas River Basin experiment: I. Experiment description and summary intercomparison. Global Planet. Change, 19 , 115135.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 111 5
PDF Downloads 222 82 5