Using TRMM/TMI to Retrieve Surface Soil Moisture over the Southern United States from 1998 to 2002

H. Gao Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by H. Gao in
Current site
Google Scholar
PubMed
Close
,
E. F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by E. F. Wood in
Current site
Google Scholar
PubMed
Close
,
T. J. Jackson USDA/ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland

Search for other papers by T. J. Jackson in
Current site
Google Scholar
PubMed
Close
,
M. Drusch European Centre for Medium-Range Weather Forecasts, Bracknell, Berkshire, United Kingdom

Search for other papers by M. Drusch in
Current site
Google Scholar
PubMed
Close
, and
R. Bindlish USDA/ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland

Search for other papers by R. Bindlish in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Passive microwave remote sensing has been recognized as a potential method for measuring soil moisture. Combined with field observations and hydrological modeling brightness temperatures can be used to infer soil moisture states and fluxes in real time at large scales. However, operationally acquiring reliable soil moisture products from satellite observations has been hindered by three limitations: suitable low-frequency passive radiometric sensors that are sensitive to soil moisture and its changes; a retrieval model (parameterization) that provides operational estimates of soil moisture from top-of-atmosphere (TOA) microwave brightness temperature measurements at continental scales; and suitable, large-scale validation datasets. In this paper, soil moisture is retrieved across the southern United States using measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) X-band (10.65 GHz) radiometer with a land surface microwave emission model (LSMEM) developed by the authors. Surface temperatures required for the retrieval algorithm were obtained from the Variable Infiltration Capacity (VIC) hydrological model using North American Land Data Assimilation System (NLDAS) forcing data. Because of the limited information content on soil moisture in the observed brightness temperatures over regions characterized by heavy vegetation, active precipitation, snow, and frozen ground, quality control flags for the retrieved soil moisture are provided. The resulting retrieved soil moisture database will be available through the NASA Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) at a 1/8° spatial resolution across the southern United States for the 5-yr period of January 1998 through December 2002. Initial comparisons with in situ observations obtained from the Oklahoma Mesonet resulted in seasonal correlation coefficients exceeding 0.7 for half of the time covered by the dataset. The dynamic range of the satellite-derived soil moisture dataset is considerably higher compared to the in situ data. The spatial pattern of the TMI soil moisture product is consistent with the corresponding precipitation fields.

Corresponding author address: Dr. Huilin Gao, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332. Email: huilin.gao@eas.gatech.edu

Abstract

Passive microwave remote sensing has been recognized as a potential method for measuring soil moisture. Combined with field observations and hydrological modeling brightness temperatures can be used to infer soil moisture states and fluxes in real time at large scales. However, operationally acquiring reliable soil moisture products from satellite observations has been hindered by three limitations: suitable low-frequency passive radiometric sensors that are sensitive to soil moisture and its changes; a retrieval model (parameterization) that provides operational estimates of soil moisture from top-of-atmosphere (TOA) microwave brightness temperature measurements at continental scales; and suitable, large-scale validation datasets. In this paper, soil moisture is retrieved across the southern United States using measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) X-band (10.65 GHz) radiometer with a land surface microwave emission model (LSMEM) developed by the authors. Surface temperatures required for the retrieval algorithm were obtained from the Variable Infiltration Capacity (VIC) hydrological model using North American Land Data Assimilation System (NLDAS) forcing data. Because of the limited information content on soil moisture in the observed brightness temperatures over regions characterized by heavy vegetation, active precipitation, snow, and frozen ground, quality control flags for the retrieved soil moisture are provided. The resulting retrieved soil moisture database will be available through the NASA Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) at a 1/8° spatial resolution across the southern United States for the 5-yr period of January 1998 through December 2002. Initial comparisons with in situ observations obtained from the Oklahoma Mesonet resulted in seasonal correlation coefficients exceeding 0.7 for half of the time covered by the dataset. The dynamic range of the satellite-derived soil moisture dataset is considerably higher compared to the in situ data. The spatial pattern of the TMI soil moisture product is consistent with the corresponding precipitation fields.

Corresponding author address: Dr. Huilin Gao, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332. Email: huilin.gao@eas.gatech.edu

Save
  • Berbery, E. H., Luo Y. , Mitchell K. E. , and Betts A. K. , 2003: Eta model estimated land surface processes and the hydrologic cycle of the Mississippi basin. J. Geophys. Res, 108 .8852, doi:10.1029/2002JD003192.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2000: Idealized model for equilibrium boundary layer over land. J. Hydrometeor, 1 , 507523.

  • Betts, A. K., Ball J. H. , Bosilovich M. , Viterbo P. , Zhang Y. C. , and Rossow W. B. , 2003: Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res, 108 .8618, doi:10.1029/2002JD003127.

    • Search Google Scholar
    • Export Citation
  • Bindlish, R., Jackson T. J. , Wood E. F. , Gao H. , Starks P. , Bosch D. , and Lakshmi V. , 2003: Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States. Remote Sens. Environ, 85 , 507515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, J. T., and Wetzel P. J. , 1991: Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment: A numerical case study. Mon. Wea. Rev, 119 , 13681390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., Schmugge T. J. , Chang A. , and Newton R. W. , 1979: Effect of surface roughness on the microwave emission from soils. J. Geophys. Res, 84 , 56995706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., Lindau R. , and Wood E. F. , 1999: The impact of the SSM/I antenna gain function on land surface parameter retrieval. Geophys. Res. Lett, 26 , 34813484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. F. , and Jackson T. J. , 2001: Vegetative and atmospheric corrections for soil moisture retrieval from passive microwave remote sensing data: Results from the Southern Great Plains Hydrology Experiment 1997. J. Hydrometeor, 2 , 181192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. F. , Gao H. , and Thiele A. , 2004: Soil moisture retrieval during the Southern Great Plains Hydrology Experiment 1999: A comparison between experimental remote sensing data and operational products. Water Resour. Res, 40 .W0250410, doi:10.1029/2003WR002441.

    • Search Google Scholar
    • Export Citation
  • Gao, H., Wood E. F. , Drusch M. , Crow W. T. , and Jackson T. J. , 2004: Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99. J. Hydrometeor, 5 , 4963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., Defries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens, 21 , 13311364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollenbeck, K. J., Schmugge T. J. , Hornberger G. M. , and Wang J. R. , 1996: Identifying soil hydraulic heterogeneity by detection of relative change in passive microwave remote sensing observations. Water Resour. Res, 32 , 139148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 2002: Remote sensing of soil moisture: Implications for groundwater recharge. Hydrogeol. J, 10 , 4051.

  • Jackson, T. J., and Schmugge T. J. , 1991: Vegetation effects on the microwave emission from soils. Remote Sens. Environ, 36 , 203219.

  • Jackson, T. J., and Hsu A. Y. , 2001: Soil moisture and TRMM Microwave Imager relationships in the Southern Great Plains 1999 (SGP99) experiment. IEEE Trans. Geosci. Remote Sens, 39 , 16321642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., Hsu A. Y. , van de Griend A. , and Eagleman J. R. , 2004: Skylab L band microwave radiometer observations of soil moisture revisited. Int. J. Remote Sens, 25 , 25852606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Njoku E. G. , 1990: A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sens, 28 , 384393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2004: Suggestions in the observational record of land–atmosphere feedback operating at seasonal time scales. J. Hydrometeor, 5 , 567572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor, 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Higgins R. W. , and Van den Dool H. M. , 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett, 30 .1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res, 99 , 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1999: Modeling ground heat flux in land surface parameterization schemes. J. Geophys. Res, 104 , 95819600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res, 109 .D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Pampaloni, P., and Paloscia S. , 1986: Microwave emission and plant water content: A comparison between field measurements and theory. IEEE Trans. Geosci. Remote Sens, 24 , 900905.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc, 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res, 108 .8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Chao B. F. , Au A. Y. , Kimball J. S. , and McDonald K. C. , 2005: Global biomass variation and its geodynamic effects: 1982-1998. Earth Interactions, 9 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Saleem, J. A., and Salvucci G. D. , 2002: Comparison of soil wetness indices for inducing functional similarity of hydrologic response across sites in Illinois. J. Hydrometeor, 3 , 8091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., 2001: Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour. Res, 37 , 13571365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., Saleem J. A. , and Kaufmann R. , 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour, 25 , 13051312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmugge, T. J., Kustas W. P. , Ritchie J. C. , Jackson T. J. , and Rango A. , 2002: Remote sensing in hydrology. Adv. Water Resour, 25 , 13671385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seuffert, G., Wilker H. , Viterbo P. , Drusch M. , and Mahfouf J. F. , 2004: The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J. Hydrometeor, 5 , 516531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsang, L., Kong J. A. , Njoku E. , Staelin D. H. , and Waters J. W. , 1977: Theory for microwave thermal emission from a layer of cloud or rain. IEEE Trans. Antennas Propag, 25 , 650657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Razani M. , and Dobson M. C. , 1983: Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Trans. Geosci. Remote Sens, 21 , 5161.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1986: From Theory to Applications. Vol. 3, Microwave Remote Sensing: Active and Passive, Artech House, 1120 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., Armstrong R. L. , and Smith J. , 2003: Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. J. Geophys. Res, 108 .8860, doi:10.1029/2003JD003530.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 472 183 23
PDF Downloads 293 89 11