Probabilistic Quantitative Precipitation Estimation in Complex Terrain

Martyn P. Clark Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
and
Andrew G. Slater Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Andrew G. Slater in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a flexible method to generate ensemble gridded fields of precipitation in complex terrain. The method is based on locally weighted regression, in which spatial attributes from station locations are used as explanatory variables to predict spatial variability in precipitation. For each time step, regression models are used to estimate the conditional cumulative distribution function (cdf) of precipitation at each grid cell (conditional on daily precipitation totals from a sparse station network), and ensembles are generated by using realizations from correlated random fields to extract values from the gridded precipitation cdfs. Daily high-resolution precipitation ensembles are generated for a 300 km × 300 km section of western Colorado (dx = 2 km) for the period 1980–2003. The ensemble precipitation grids reproduce the climatological precipitation gradients and observed spatial correlation structure. Probabilistic verification shows that the precipitation estimates are reliable, in the sense that there is close agreement between the frequency of occurrence of specific precipitation events in different probability categories and the probability that is estimated from the ensemble. The probabilistic estimates have good discrimination in the sense that the estimated probabilities differ significantly between cases when specific precipitation events occur and when they do not. The method may be improved by merging the gauge-based precipitation ensembles with remotely sensed precipitation estimates from ground-based radar and satellites, or with precipitation and wind fields from numerical weather prediction models. The stochastic modeling framework developed in this study is flexible and can easily accommodate additional modifications and improvements.

Corresponding author address: Martyn Clark, Center for Science and Technology Policy Research, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0488. Email: clark@vorticity.colorado.edu

Abstract

This paper describes a flexible method to generate ensemble gridded fields of precipitation in complex terrain. The method is based on locally weighted regression, in which spatial attributes from station locations are used as explanatory variables to predict spatial variability in precipitation. For each time step, regression models are used to estimate the conditional cumulative distribution function (cdf) of precipitation at each grid cell (conditional on daily precipitation totals from a sparse station network), and ensembles are generated by using realizations from correlated random fields to extract values from the gridded precipitation cdfs. Daily high-resolution precipitation ensembles are generated for a 300 km × 300 km section of western Colorado (dx = 2 km) for the period 1980–2003. The ensemble precipitation grids reproduce the climatological precipitation gradients and observed spatial correlation structure. Probabilistic verification shows that the precipitation estimates are reliable, in the sense that there is close agreement between the frequency of occurrence of specific precipitation events in different probability categories and the probability that is estimated from the ensemble. The probabilistic estimates have good discrimination in the sense that the estimated probabilities differ significantly between cases when specific precipitation events occur and when they do not. The method may be improved by merging the gauge-based precipitation ensembles with remotely sensed precipitation estimates from ground-based radar and satellites, or with precipitation and wind fields from numerical weather prediction models. The stochastic modeling framework developed in this study is flexible and can easily accommodate additional modifications and improvements.

Corresponding author address: Martyn Clark, Center for Science and Technology Policy Research, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0488. Email: clark@vorticity.colorado.edu

Save
  • Bradley, A. A., Hashino T. , and Schwartz S. S. , 2003: Distributions-oriented verification of probability forecasts for small data samples. Wea. Forecasting, 18 , 903917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bras, R. L., and Rodriguez-Iturbe I. , 1976: Rainfall generation: A nonstationary time-varying multidimensional model. Water Resour. Res, 12 , 450456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bras, R. L., and Rodriguez-Iturbe I. , 1985: Random Functions and Hydrology. Dover, 559 pp.

  • Carpenter, T. M., and Georgakakos K. P. , 2004: Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model. J. Hydrol, 249 , 148175.

    • Search Google Scholar
    • Export Citation
  • Chua, S. H., and Bras R. L. , 1982: Optimal estimators of mean area precipitation in regions of orographic influence. J. Hydrol, 57 , 2348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Hay L. E. , 2004: Use of medium-range weather forecasts to produce predictions of streamflow. J. Hydrometeor, 5 , 1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Mass C. F. , and Westrick K. J. , 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15 , 730744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowpertwait, P. S. P., Kilsby C. G. , and O'Connell P. E. , 2002: A space–time Neyman–Scott model of rainfall: Empirical analysis of extremes. Water Resour. Res, 38 .1131, doi:10.1029/2001WR000709.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor, 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., Anagnostou M. , and Borga M. , 2002: Improving radar-based estimation of rainfall over complex terrain. J. Appl. Meteor, 41 , 11631178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., and Tacher L. , 2003: An efficient and accurate algorithm for generating spatially-correlated random fields. Commun. Numer. Methods Eng, 19 , 801808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraris, L., Gabellani S. , Rebora N. , and Provenzale A. , 2003: A comparison of stochastic models for rainfall downscaling. Water Resour. Res, 39 .1368, doi:10.1029/2003WR002504.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol, 228 , 113129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2001: Geostatistical modeling of uncertainty in soil science. Geoderma, 103 , 326.

  • Gupta, V. K., and Waymire E. C. , 1993: A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteor, 32 , 251267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev, 129 , 550560.

  • Harris, D., Medabde M. , Seed A. , and Austin G. , 1996: Multifractal characterization of rain fields with a strong orographic influence. J. Geophys. Res, 101 , D21. 2640526414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., and Lettenmaier D. P. , 1981: Data requirements for Kriging: Estimation and network design. Water Resour. Res, 17 , 16411650.

  • Johnson, M. E., 1987: Multivariate Statistical Simulation. Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, 230 pp.

    • Search Google Scholar
    • Export Citation
  • Journel, A. G., and Ying Z. , 2001: The theoretical links between sequential Gaussian simulation, Gaussian truncated simulation, and probability field simulation. Math. Geol, 33 , 3140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavetski, D. N., Franks S. W. , and Kuczera G. , 2003: Confronting input uncertainty in environmental modelling. Advances in Calibration of Watershed Models, Q. Duan et al., Eds., Amer. Geophys. Union, 345 pp.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. S., and Krzysztofowicz R. , 1997: A bivariate meta-Gaussian density for use in hydrology. Stochastic Hydrol. Hydraul, 11 , 1731.

  • Kitanidis, P. K., 1986: Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour. Res, 22 , 499507.

  • Krajewski, W. F., 1987: Co-kriging radar-rainfall and raingauge data. J. Geophys. Res, 92 , 95719580.

  • Kunkel, K. E., and Coauthors, 1998: An expanded digital daily database for climate resources applications in the Midwestern United States. Bull. Amer. Meteor. Soc, 79 , 13571366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanza, L. G., 2000: A conditional simulation model of intermittent rain fields. Hydrol. Earth Syst. Sci, 4 , 173183.

  • Loader, C., 1999: Local Regression and Likelihood. Springer, 308 pp.

  • Marquinez, J., Lastra J. , and Garcia P. , 2003: Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis. J. Hydrol, 270 , 111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and Winkler R. L. , 1987: A general framework for forecast verification. Mon. Wea. Rev, 115 , 13301338.

  • Nykanen, D. K., and Harris D. , 2003: Orographic influences on the multiscale statistical properties of precipitation. J. Geophys. Res, 108 .8381, doi:10.1029/2001JD001518.

    • Search Google Scholar
    • Export Citation
  • Over, T. M., and Gupta V. K. , 1996: A space–time theory of mesoscale rainfall using random cascades. J. Geophys. Res, 101 , D21. 2631926331.

  • Rajagopalan, B., and Lall U. , 1998: Locally weighted polynomial estimation of spatial precipitation. J. Geogr. Inf. Decision Anal, 2 , 4451.

    • Search Google Scholar
    • Export Citation
  • Reek, T., Doty S. R. , and Owen T. W. , 1992: A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bull. Amer. Meteor. Soc, 73 , 753762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors, 2002: Understanding Utah winter storms—The Intermountain Precipitation Experiment. Bull. Amer. Meteor. Soc, 83 , 189199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Perica S. , Welles E. , and Schaake J. C. , 2000: Simulation of precipitation fields from probabilistic quantitative precipitation forecast. J. Hydrol, 239 , 203229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , Robinson D. A. , and McGinnis D. L. , 1998: Characteristics of snowfall over the eastern half of the United States and relationships with principal modes of low-frequency atmospheric variability. J. Climate, 11 , 234250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , Armstrong R. L. , McGinnis D. A. , and Pulwarty R. L. , 1999: Characteristics of the western U.S. snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res, 35 , 21452160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , and Frei A. , 2001: Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res, 37 , 675688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. M. S., O'Connell P. E. , and Hosking J. R. M. , 1996a: Modeling the effects of spatial variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic rainfall field model. J. Hydrol, 175 , 6788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. M. S., O'Connell P. E. , and Hosking J. R. M. , 1996b: Modeling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models. J. Hydrol, 175 , 89111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silvapalan, M., and Wood E. F. , 1987: A multidimensional model of non-stationary space–time rainfall at the catchment scale. Water Resour. Res, 23 , 12891299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Clark M. P. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor, in press.

  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc, 84 , 18071813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., Vautard R. , and Strauss B. , 1998: Evaluation of probabilistic prediction systems. Proc. ECMWF Workshop on Predictability, Reading, United Kingdom, ECMWF, 1–25.

  • Todini, E., 2001a: A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol. Earth Syst. Sci, 5 , 187199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todini, E., 2001b: Influence of parameter estimation uncertainty in Kriging: Part 1—Theoretical development. Hydrol. Earth Syst. Sci, 5 , 215223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todini, E., Pellegrini F. , and Mazzetti C. , 2001: Influence of parameter estimation uncertainty in Kriging: Part 2—Test and case study applications. Hydrol. Earth Syst. Sci, 5 , 225232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., Talagrand O. , Candille G. , and Zhu Y. , 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner's Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Valdes, J. B., Rodriguez-Iturbe I. , and Gupta V. K. , 1985: Approximation of temporal rainfall from a multidimensional model. Water Resour. Res, 21 , 12591270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., Mass C. F. , and Colle B. A. , 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc, 80 , 22892298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheater, H. S., and Coauthors, 2000: Spatial–temporal rainfall fields: Modeling and statistical aspects. Hydrol. Earth Syst. Sci, 4 , 581601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Young, C. B., Nelson B. R. , Bradley A. A. , Smith J. A. , Peters-Lidard C. D. , Kruger A. , and Baeck M. L. , 1999: An evaluation of NEXRAD precipitation estimates in complex terrain. J. Geophys. Res, 104 , D16. 1969119703.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 806 228 17
PDF Downloads 637 152 15