The Relationship between Intermodel Differences and Surface Energy Balance Complexity in the Rhône-Aggregation Intercomparison Project

S. Fox Department of Physical Geography, Macquarie University, North Ryde, New South Wales, Australia

Search for other papers by S. Fox in
Current site
Google Scholar
PubMed
Close
,
A. J. Pitman Department of Physical Geography, Macquarie University, North Ryde, New South Wales, Australia

Search for other papers by A. J. Pitman in
Current site
Google Scholar
PubMed
Close
,
A. Boone CNRM/GAME, Météo-France, Toulouse, France

Search for other papers by A. Boone in
Current site
Google Scholar
PubMed
Close
, and
F. Habets CNRM/GAME, Météo-France, Toulouse, France

Search for other papers by F. Habets in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Six modes of complexity of the Chameleon land surface model (CHASM) are used to explore the relationship between the complexity of the surface energy balance (SEB) formulation and the capacity of the model to explain intermodel variations in results from the Rhône-Aggregation Intercomparison Project (Rhône-AGG). At an annual time scale, differences between models identified in the Rhône-AGG experiments in the partitioning of available energy and water at the spatial scale of the Rhône Basin can be reproduced by CHASM via variations in the SEB complexity. Only two changes in the SEB complexity in the model generate statistically significant differences in the mean latent heat flux. These are the addition of a constant surface resistance to the simplest mode of CHASM and the addition of tiling and temporally and spatially variable surface resistance to produce the most complex model. Further, the only statistically significant differences in runoff occur following the addition of a constant surface resistance to the simplest mode of CHASM. As the time scale is reduced from annual to monthly, specific mechanisms begin to dominate the simulations produced by each Rhône-AGG model and introduce parameterization-specific behavior that depends on the time evolution of processes operating on longer time scales. CHASM cannot capture all this behavior by varying the SEB complexity, demonstrating the contribution to intermodel differences by hydrology and snow-related processes. Despite the increasing role of hydrology and snow in simulating processes at finer time scales, provided the constant surface resistance is included, CHASM's modes perform within the range of uncertainty illustrated by other Rhône-AGG models on seasonal and annual time scales.

Corresponding author address: Prof. A. J. Pitman, Department of Physical Geography, Macquarie University, North Ryde, 2109 NSW, Australia. Email: apitman@els.mq.edu.au

Abstract

Six modes of complexity of the Chameleon land surface model (CHASM) are used to explore the relationship between the complexity of the surface energy balance (SEB) formulation and the capacity of the model to explain intermodel variations in results from the Rhône-Aggregation Intercomparison Project (Rhône-AGG). At an annual time scale, differences between models identified in the Rhône-AGG experiments in the partitioning of available energy and water at the spatial scale of the Rhône Basin can be reproduced by CHASM via variations in the SEB complexity. Only two changes in the SEB complexity in the model generate statistically significant differences in the mean latent heat flux. These are the addition of a constant surface resistance to the simplest mode of CHASM and the addition of tiling and temporally and spatially variable surface resistance to produce the most complex model. Further, the only statistically significant differences in runoff occur following the addition of a constant surface resistance to the simplest mode of CHASM. As the time scale is reduced from annual to monthly, specific mechanisms begin to dominate the simulations produced by each Rhône-AGG model and introduce parameterization-specific behavior that depends on the time evolution of processes operating on longer time scales. CHASM cannot capture all this behavior by varying the SEB complexity, demonstrating the contribution to intermodel differences by hydrology and snow-related processes. Despite the increasing role of hydrology and snow in simulating processes at finer time scales, provided the constant surface resistance is included, CHASM's modes perform within the range of uncertainty illustrated by other Rhône-AGG models on seasonal and annual time scales.

Corresponding author address: Prof. A. J. Pitman, Department of Physical Geography, Macquarie University, North Ryde, 2109 NSW, Australia. Email: apitman@els.mq.edu.au

Save
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res, 101 , 72097225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17 , 187208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003: Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e). 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Champeaux, J. L., Acros D. , Bazile E. , Giard D. , Gourtorbe J. P. , Habets F. , Noilhan J. , and Roujean J. L. , 2000: AVHRR-derived vegetation mapping over western Europe for use in numerical weather prediction models. Int. J. Remote Sens, 21 , 11831189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J. Climate, 10 , 11441215.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., Pitman A. J. , and Henderson-Sellers A. , 1990: A model of land surface climatology for general circulation models. Trent Tech. Note 90-1, Trent University, Peterborough, ON, Canada, 129 pp.

  • Crossley, J. F., Polcher J. , Cox P. M. , Gedney N. , and Planton S. , 2000: Uncertainties linked to land surface processes in climate change simulations. Climate Dyn, 16 , 949961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., 1999: Surface energy balance complexity in GCM land surface models. Climate Dyn, 15 , 389403.

  • Desborough, C. E., and Pitman A. J. , 1998: The BASE land surface model. Global Planet. Change, 19 , 318.

  • Desborough, C. E., Pitman A. J. , and McAvaney B. , 2001: Surface energy balance complexity in GCM land surface models. Part II: Coupled simulations. Climate Dyn, 17 , 615626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The global soil wetness project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc, 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Koster R. D. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model. 2. Parameter estimation and model demonstration. J. Geophys. Res, 105 , 2482324838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, Y., Brun E. , Mérindol L. , Guyomarc'h G. , Lesaffre B. , and Martin E. , 1993: A meteorological estimation of relevant parameters for snow schemes used with atmospheric models. Ann. Glaciol, 18 , 6571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., Golaz C. , and Habets F. , 2001: Simulation of the water budget and the river flows of the Rhône basin from 1981 to 1994. J. Hydrol, 244 , 6085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Douville H. , Polcher J. , and Valdes P. J. , 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13 , 30663079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordano, A., Ed. 1992: CORINE soil erosion risk and important land resources of the European community. EUR Tech. Rep. 13233 EN, 97 pp.

  • Habets, F., Etchevers R. , Golaz C. , Leblois E. , Ledoux E. , Martin E. , Noilhan J. , and Ottlé C. , 1999: Simulation of the water budget and the river flows of the Rhône basin. J. Geophys. Res, 104 , 3114531172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Pitman A. J. , Love P. K. , Irannejad P. , and Chen T. , 1995: The project for Intercomparison of Land Surface Parameterizaton Schemes (PILPS) phases 2 and 3. Bull. Amer. Meteor. Soc, 76 , 489503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B , 593610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res, 97 , 26972715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Milly P. C. , 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res, 105 , 2480924822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res, 99 , 14151428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and Coauthors, 1998: The Project for Intercomparison of land-surface Parameterization schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes. Global Planet. Change, 19 , 137159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev, 97 , 739805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAvaney, B. J., and Coauthors, 2001: Model evaluation. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 471–523.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., 1992: Potential evaporation and soil moisture in general circulation models. J. Climate, 5 , 209226.

  • Milly, P. C. D., and Shmakin A. B. , 2002a: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor, 3 , 283299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Shmakin A. B. , 2002b: Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability. J. Hydrometeor, 3 , 301310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e). 2: Comparison of model results with observations. Global Planet. Change, 38 , 3153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 1999: Key results and implications from phase 1(c) of the Project for Intercomparison of Land-surface Parameterization Schemes. Climate Dyn, 15 , 673684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., Xia Y. , Leplastrier M. , and Henderson-Sellers A. , 2003: The CHAmeleon Surface Model: Description and use with the PILPS Phase 2(e) forcing data. Global Planet. Change, 38 , 121135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., McAvaney B. J. , Bagnoud N. , and Cheminat B. , 2004: Are inter-model differences in AMIP-II near surface air temperature means and extremes explained by land surface energy balance complexity? Geophys. Res. Lett, 31 .L05205, doi:10.1029/2003GL019233.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., and Barnett T. P. , 1983: Numerical model–reality intercomparison tests using small-sample statistics. J. Atmos. Sci, 40 , 18841896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Ya , Schlosser C. A. , Speranskaya N. A. , and Xue Y. , 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8 , 1535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B., and Wigley T. M. L. , 1990: Regional validation of means, variances and spatial patterns in general circulation model control runs. J. Geophys. Res, 95 , 829850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., Sellers P. J. , Randall D. A. , Schneider E. K. , Shukla J. , Kinter J. L. , Hou Y-T. , and Albertazzi E. , 1989: Effects of implementing the Simple Biosphere Model in a general circulation model. J. Atmos. Sci, 46 , 2757.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Coauthors, 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev, 128 , 301321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water and carbon between continents and the atmosphere. Science, 275 , 502509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., and Henderson-Sellers A. , 1996: Modeling soil moisture: A Project for Intercomparison of Land-Surface Parameterisation Schemes, Phase 2(b). J. Geophys. Res, 101 , 74617475.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor, 2 , 725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., and Coauthors, 1996: Modeling vadose zone liquid water fluxes: Infiltration, runoff, drainage, interflow. Global Planet. Change, 13 , 5771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., and Santer B. , 1990: Statistical comparison of spatial fields in model validation, perturbation, and predictability experiments. J. Geophys. Res, 95 , 851865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res, 97 , D3. 27172728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The project for intercomparison of land-surface parameterization schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment: 1. Experimental description and summary intercomparisons. Global Planet Change, 115–135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 30 4
PDF Downloads 24 6 0