Seasonal Variations in Terrestrial Water Storage for Major Midlatitude River Basins

Martin Hirschi Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

Search for other papers by Martin Hirschi in
Current site
Google Scholar
PubMed
Close
,
Sonia I. Seneviratne Goddard Earth Science and Technology Center, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sonia I. Seneviratne in
Current site
Google Scholar
PubMed
Close
, and
Christoph Schär Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a new diagnostic dataset of monthly variations in terrestrial water storage for 37 midlatitude river basins in Europe, Asia, North America, and Australia. Terrestrial water storage is the sum of all forms of water storage on land surfaces, and its seasonal and interannual variations are in principle determined by soil moisture, groundwater, snow cover, and surface water. The dataset is derived with the combined atmospheric and terrestrial water-balance approach using conventional streamflow measurements and atmospheric moisture convergence data from the ECMWF 40-yr Re-Analysis (ERA-40). A recent study for the Mississippi River basin (Seneviratne et al. 2004) has demonstrated the validity of this diagnostic approach and found that it agreed well with in situ observations in Illinois. The present study extends this previous analysis to other regions of the midlatitudes.

A systematic analysis is presented of the slow drift that occurs with the water-balance approach. It is shown that the drift not only depends on the size of the catchment under consideration, but also on the geographical region and the underlying topography. The drift is in general not constant in time, but artificial inhomogeneities may result from changes in the global observing system used in the 44 yr of the reanalysis. To remove this time-dependent drift, a simple high-pass filter is applied. Validation of the results is conducted for several catchments with an appreciable coverage of in situ soil moisture and snow cover depth observations in the former Soviet Union, Mongolia, and China. Although the groundwater component is not accounted for in these observations, encouraging correlations are found between diagnostic and in situ estimates of terrestrial water storage, both for seasonal and interannual variations. Comparisons conducted against simulated ERA-40 terrestrial water storage variations suggest that the reanalysis substantially underestimates the amplitude of the seasonal cycle.

The basin-scale water-balance (BSWB) dataset is available for download over the Internet. It constitutes a useful tool for the validation of climate models, large-scale land surface data assimilation systems, and indirect observations of terrestrial water storage variations.

* Current affiliation: Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

Corresponding author address: Martin Hirschi, Institute for Atmospheric and Climate Science, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland. Email: martin.hirschi@env.ethz.ch

Abstract

This paper presents a new diagnostic dataset of monthly variations in terrestrial water storage for 37 midlatitude river basins in Europe, Asia, North America, and Australia. Terrestrial water storage is the sum of all forms of water storage on land surfaces, and its seasonal and interannual variations are in principle determined by soil moisture, groundwater, snow cover, and surface water. The dataset is derived with the combined atmospheric and terrestrial water-balance approach using conventional streamflow measurements and atmospheric moisture convergence data from the ECMWF 40-yr Re-Analysis (ERA-40). A recent study for the Mississippi River basin (Seneviratne et al. 2004) has demonstrated the validity of this diagnostic approach and found that it agreed well with in situ observations in Illinois. The present study extends this previous analysis to other regions of the midlatitudes.

A systematic analysis is presented of the slow drift that occurs with the water-balance approach. It is shown that the drift not only depends on the size of the catchment under consideration, but also on the geographical region and the underlying topography. The drift is in general not constant in time, but artificial inhomogeneities may result from changes in the global observing system used in the 44 yr of the reanalysis. To remove this time-dependent drift, a simple high-pass filter is applied. Validation of the results is conducted for several catchments with an appreciable coverage of in situ soil moisture and snow cover depth observations in the former Soviet Union, Mongolia, and China. Although the groundwater component is not accounted for in these observations, encouraging correlations are found between diagnostic and in situ estimates of terrestrial water storage, both for seasonal and interannual variations. Comparisons conducted against simulated ERA-40 terrestrial water storage variations suggest that the reanalysis substantially underestimates the amplitude of the seasonal cycle.

The basin-scale water-balance (BSWB) dataset is available for download over the Internet. It constitutes a useful tool for the validation of climate models, large-scale land surface data assimilation systems, and indirect observations of terrestrial water storage variations.

* Current affiliation: Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

Corresponding author address: Martin Hirschi, Institute for Atmospheric and Climate Science, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland. Email: martin.hirschi@env.ethz.ch

Save
  • Alestalo, M., 1983: The atmospheric water vapour budget over Europe. Variations in the Global Water Budget, A. Street-Perrott, Ed., D. Reidel, 67–79.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and Reichel E. , 1975: The World Water Balance—Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff. Elsevier, 179 pp.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev, 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Hagemann S. , and Hodges K. I. , 2004a: Can climate trends be calculated from reanalysis data? J. Geophys. Res, 109 .D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Hodges K. I. , and Hagemann S. , 2004b: Sensitivity of large-scale atmospheric analyses to humidity observations and its impact on the global water cycle and tropical and extratropical weather systems in ERA-40. Tellus, 56A , 202217.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and Rasmusson E. M. , 1999: Mississippi moisture budgets on regional scales. Mon. Wea. Rev, 127 , 26542673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land–surface atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res, 101 , 72097225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Viterbo P. , and Wood E. , 1998: Surface energy and water balance for the Arkansas–Red River basin from the ECMWF reanalysis. J. Climate, 11 , 28812897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Viterbo P. , 1999: Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res, 104 , 1929319306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Bosilovich M. , Viterbo P. , Zhang Y. , and Rossow W. B. , 2003a: Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res, 108 .8618, doi:10.1029/2002JD003127.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Viterbo P. , 2003b: Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeor, 4 , 11941211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor, 38 , 726740.

  • Budyko, M. I., Ed. 1963: Atlas of the Heat Balance of the Earth. Glavnaia Geofizica Obsercatoriia, 69 pp.

  • Christensen, J. H., Christensen O. B. , Lopez P. , van Meijgaard E. , and Botzet M. , 1996: The HIRHAM4 regional atmospheric climate model. Scientific Rep. 96-4, Danish Meteorological Institute, 51 pp.

  • Christensen, J. H., Carter T. R. , and Giorgi F. , 2002: PRUDENCE employs new methods to assess European climate change. Eos, Trans. Amer. Geophys. Union,83, 147.

    • Crossref
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three dimensional variational assimilation (3D-Var). Part I: Formulation. Quart. J. Roy. Meteor. Soc, 124 , 17831808.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., Marquet P. , and Jones R. G. , 1998: Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn, 14 , 173189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and Diaz H. F. , 2000: Global characteristics of stream flow seasonality and variability. J. Hydrometeor, 1 , 289309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc, 80 , 851875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , and Oki T. , 2002: GSWP-2: The Second Global Soil Wetness Project Science and Implementation Plan. IGPO Publication Series 37, International GEWEX Project Office, 65 pp.

  • Döll, P., Kaspar F. , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol, 270 , 105134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döscher, R., Willen U. , Jones C. , Rutgersson A. , Meier H. E. M. , Hansson U. , and Graham L. P. , 2002: The development of the coupled regional ocean–atmosphere model RCAO. Boreal Environ. Res, 7 , 183192.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Viterbo P. , Mahfouf J-F. , and Beljaars A. C. M. , 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev, 128 , 17331756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism. 1. Theory and observations. Water Resour. Res, 34 , 765776.

  • Entin, J. K., Robock A. , Vinnikov K. Y. , Zabelin V. , Liu S. , Namkhai A. , and Adysasuren T. , 1999: Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan, 77 , 183197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, L. H., and Keddy P. A. , 2005: The World's Largest Wetlands: Ecology and Conservation. Cambridge University Press, 488 pp.

  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol, 18 , 873900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Marinucci M. R. , and Bates G. T. , 1993a: Development of a second generation regional climate model (RegCM2). Part I: Boundary layer and radiative transfer processes. Mon. Wea. Rev, 121 , 27942813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Marinucci M. R. , Bates G. T. , and Canio G. D. , 1993b: Development of a second generation regional climate model (REGCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev, 121 , 28142832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J. J., Chen Y. , and Ötles Z. , 1997: Atmospheric water vapor transport in NCEP–NCAR reanalyses: Comparison with river discharge in the central United States. Bull. Amer. Meteor. Soc, 78 , 19571969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Dümenil L. , 1998: A parametrization of the lateral waterflow for the global scale. Climate Dyn, 14 , 1731.

  • Hortal, M., and Simmons A. J. , 1991: Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev, 119 , 10571074.

  • Jacob, D., 2001: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteor. Atmos. Phys, 77 , 6173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R., Murphy J. , Hassell D. , and Taylor R. , 2001: Ensemble mean changes in a simulation of the European climate of 2071–2100, using the new Hadley Centre regional climate modelling system HadAM3H/HadRM3H. Hadley Centre Rep., Met Office, 19 pp. [Avaliable online at http://prudence.dmi.dk/public/publications/hadley_200208.pdf.].

  • Kleinn, J., Frei C. , Gurtz J. , Lüthi D. , Vidale P. L. , and Schär C. , 2005: Hydrologic simulations in the Rhine basin driven by a regional climate model. J. Geophys. Res, 110 .doi:10.1029/2004JD005143.

    • Search Google Scholar
    • Export Citation
  • Korzun, V. I., 1974: World water balance and water resources of the earth. Report of the USSR Committee for the IHD, 663 pp.

  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor, 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Lenderink, G., van den Hurk B. , van Meijgaard E. , van Ulden A. , and Cuijpers H. , 2003: Simulation of present-day climate in RACMO2: First results and model developments. KNMI Tech. Rep. 252, 24 pp.

  • Milly, P. C. D., and Dunne K. A. , 1994: Sensitivity of the global water cycle to the water-holding capacity of the land. J. Climate, 7 , 506526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Wetherald R. T. , Dunne K. A. , and Delworth T. L. , 2002: Increasing risks of great floods in a changing climate. Nature, 415 , 514517.

  • Mintz, Y., and Serafini Y. V. , 1992: A global monthly climatology of soil moisture and water balance. Climate Dyn, 8 , 1327.

  • NSIDC, 1999: Historical Soviet Daily Snow Depth. Version 2.0. National Snow and Ice Data Center, Boulder, CO, CD-ROM.

  • Oki, T., Musiake K. , Matsuyama J. , and Masuda K. , 1995: Global atmospheric water balance and runoff from large river basins. Hydrol. Processes, 9 , 655678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardé, M., 1947: Fleuves et Rivières. 2d ed. Librairie Armand Colin, 224 pp.

  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. AIP Press, 520 pp.

  • Pope, D. V., Gallani M. , Rowntree R. , and Stratton A. , 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn, 16 , 123146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rantz, S. E., 1982a: Measurement of stage and discharge. Vol. 1, Measurement and Computation of Streamflow, Water-supply Paper 2175, U.S. Geological Survey, 284 pp.

  • Rantz, S. E., 1982b: Computation of discharge. Vol. 2, Measurement and Computation of Streamflow, Water-supply Paper 2175, U.S. Geological Survey, 631 pp.

  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. Mon. Wea. Rev, 96 , 720734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , Dong J. , and Berg A. A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor, 5 , 430442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc, 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Mu M. , Vinnikov K. , Trofimova I. V. , and Adamenko T. I. , 2005: Forty five years of observed soil moisture in the Ukraine: No summer desiccation (yet). Geophys. Res. Lett, 32 .doi:10.1029/2004GL021914.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Famiglietti J. S. , 2001: An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res, 37 , 13271339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez, E., Gallardo C. , Gaertner M. A. , Arribas A. , and Castro M. , 2004: Future climate extreme events in the Mediterranean simulated by a regional climate model: First approach. Global Planet. Change, 44 , 163180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., Lüthi D. , Beyerle U. , and Heise E. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., Vasilina L. , Pertziger F. , and Dirren S. , 2004a: Seasonal runoff forecasting using precipitation from meteorological data assimilation systems. J. Hydrometeor, 5 , 959973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., Vidale P. L. , Lüthi D. , Frei C. , Häberli C. , Liniger M. A. , and Appenzeller C. , 2004b: The role of increasing temperature variability in European summer heatwaves. Nature, 427 , 332336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., 2003: Terrestrial water storage: A critical variable for midlatitude climate and climate change. Ph.D. thesis, Atmospheric and Climate Science ETH Zürich, ETH No. 14944, 155 pp.

  • Seneviratne, S. I., Pal J. S. , Eltahir E. A. B. , and Schär C. , 2002: Summer dryness in a warmer climate: A process study with a regional climate model. Climate Dyn, 20 , 6985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Viterbo P. , Lüthi D. , and Schär C. , 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17 , 20392057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evaporation on the earth's climate. Science, 215 , 14981501.

  • Simmons, A. J., and Gibson J. K. , 2000: The ERA-40 Project Plan. ERA-40 Project Report Series 1, ECMWF, Shinfield Park, Reading, United Kingdom, 62 pp.

  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res, 109 .D24115, doi:10.1029/2004JD005306.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., Doms G. , Schättler U. , Bitzer H. W. , Gassmann A. , Damrath U. , and Gregoric G. , 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys, 82 , 7596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Struckmeier, W. F., Gilbrich W. H. , Richts A. , and Zaepke M. , 2004: WHYMAP and the groundwater resources map of the world at the scale of 1:50 000 000: Special Edition for the 32nd International Geological Congress, Florence/Italy, 20–28 August 2004. BGR. [Available online at http://www.bgr.de/b1hydro/fachbeitraege/a200401/expl_note.pdf.].

  • Tapley, B. D., Bettadpur S. , Ries J. C. , Thompson P. F. , and Watkins M. M. , 2004: GRACE measurements of mass variability in the earth system. Science, 305 , 503505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. Tech. Memo. 295, ECMWF, Reading, United Kingdom, 43 pp.

  • van den Hurk, B. J. J. M., and Coauthors, 2005: Soil control on runoff response to climate change in regional climate model simulations. J. Climate, 18 , 35363551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., Lüthi D. , Frei C. , Seneviratne S. , and Schär C. , 2003: Predictability and uncertainty in a regional climate model. J. Geophys. Res, 108 .4586, doi:10.1029/2002JD002810.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Fekete B. M. , Meybeck M. , and Lammers R. , 2000: A simulated topological network representing the global system of rivers at 30-minute spatial resolution (STN-30). Global Biogeochem. Cycles, 14 , 599621.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., Swenson S. , Zlotnicki V. , and Velicogna I. , 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett, 31 .L11501, doi:10.1029/2004GL019779.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and Manabe S. , 1999: Detectability of summer dryness caused by greenhouse warming. Climatic Change, 43 , 495511.

  • Winter, T. C., 1981: Uncertainties in estimating the water balance of lakes. Water Resour. Bull, 17 , 82115.

  • Yeh, P. J-F., Irizarry M. , and Eltahir E. A. B. , 1998: Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res, 103 , 1982319837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zektser, I. S., and Loaiciga H. A. , 1993: Groundwater fluxes in the global hydrologic cycle: Past, present and future. J. Hydrol, 144 , 405427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zektser, I. S., Loaiciga H. A. , and Wolf J. T. , 2005: Environmental impacts of groundwater overdraft: Selected case studies in the southwestern United States. Environ. Geol, 47 , 396404.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 526 177 13
PDF Downloads 264 68 8