• Abaurrea, J., , and Cebrián A. C. , 2001: Trend and variability analysis of rainfall series and their extreme events. Detecting and Modelling Regional Climate Change, M. Brunet India and D. López Bonillo, Eds., Springer-Verlag, 191–201.

    • Search Google Scholar
    • Export Citation
  • Abaurrea, J., , and Cebrián A. C. , 2002: Drought analysis based on a cluster Poisson model: Distribution of the most severe drought. Climate Res., 22 , 227235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adamson, P. T., , Metcalfe A. V. , , and Parmentier B. , 1999: Bivariate extreme value distributions: An application of the Gibbs sampler to the analysis of floods. Water Resour. Res., 35 , 28252832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, J. I., , and Pérez-Abreu V. , 1994: Some statistical analysis of the cluster point processes of hurricanes on the coasts of Mexico. Statistics for the Environment 2: Water-Related Issues, V. Barnett and K. F. Turkman, Eds., Wiley, 95–108.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 208 pp.

  • Cox, D. R., , and Isham V. , 1980: Point Processes. Chapman and Hall, 188 pp.

  • Davison, A. C., , and Smith R. L. , 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., 52B , 393442.

  • Davison, A. C., , and Hinkley D. V. , 1997: Bootstrap Methods and Their Application. Cambridge University Press, 592 pp.

  • Embrechts, P., , Kluppelberg C. , , and Mikosch T. , 1997: Modelling Extremal Events for Insurance and Finance. Springer-Verlag, 645 pp.

  • Ferro, C. A. T., , and Segers J. , 2003: Inference for clusters of extreme values. J. Roy. Stat. Soc., 65B , 545556.

  • Foley, J. C., 1957: Drought in Australia: Review of records from earliest years of settlement to 1955. Australian Bureau of Meteorology Bulletin 43, 281 pp.

  • Gertensgarbe, F. W., , and Werner P. C. , 1989: A method for the statistical definition of extreme-value regions and their application to meteorological time series. Z. Meteor., 39 , 224226.

    • Search Google Scholar
    • Export Citation
  • Gibbons, J. D., , and Chakraborti S. , 1992: Nonparametric Statistical Inference. Dekker, 544 pp.

  • Gibbs, W. J., , and Maher J. V. , 1967: Rainfall deciles as drought indicators. Australian Bureau of Meteorology Bulletin 48, 33 pp.

  • González-Rouco, J. F., , Jiménez J. L. , , Quesada V. , , and Valero F. , 2001: Quality control and homogeneity of precipitation data in the southwest of Europe. J. Climate, 14 , 964978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisdal, H., , and Tallaksen L. M. , 2003: Estimation or regional meteorological and hydrological drought characteristics: A case study for Denmark. J. Hydrol., 281 , 230247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. L., , Kotz S. , , and Balakrishnan N. , 1994: Continuous Univariate Distributions. Vols. 1 and 2, 2d ed. Wiley-Interscience, 1475 pp.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., , Parlange M. B. , , and Naveau P. , 2002: Statistics of extremes in hydrology. Adv. Water Resour., 25 , 12871304.

  • Kendall, D. R., , and Dracup J. A. , 1992: On the generation of drought events using an alternating renewal-reward model. Stochastic Hydrol. Hydraul., 6 , 5568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leadbetter, M. R., , Lindgren G. , , and Rootzén H. , 1983: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, 336 pp.

    • Search Google Scholar
    • Export Citation
  • Madsen, H., , and Rosbjerg D. , 1998: A regional Bayesian method for estimation of extreme streamflow droughts. Statistical and Bayesian Methods in Hydrological Sciences, E. Parent et al., Eds., IHP-V Technical Document in Hydrology, Vol. 20, UNESCO, 327–339.

    • Search Google Scholar
    • Export Citation
  • Marachi, G., 2000: Agricultural drought—A practical approach to definition, assesment and mitigation strategies. Drought and Drought Mitigation in Europe, J. V. Vogt and F. Somma, Eds., Kluwer Academic, 63–75.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , Doesken N. J. , , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Meeker, W. Q., , and Escobar L. A. , 1998: Statistical Methods for Reliability Data. Wiley, 680 pp.

  • Moyé, L. A., , Kapadia A. S. , , and Cech I. M. , 1988: The theory of runs with application to drought prediction. J. Hydrol., 103 , 127137.

  • Rasmussen, P. F., , Ashkar F. , , Rosbjerg D. , , and Bobée B. , 1994: The POT method for flood estimation: A review. Extreme Values: Floods and Droughts, K. W. Hipel, Ed., Vol. 1, Kluwer, 15–26.

    • Search Google Scholar
    • Export Citation
  • Sen, Z., 1976: Wet and dry periods of annual flow series. J. Hydrol., 35 , 311324.

  • Tallaksen, L. M., , Madsen H. , , and Clausen B. , 1997: On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci., 42 , 1533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelenhasic, E., , and Salvai A. , 1987: A method of streamflow analysis. Water Resour. Res., 23 , 156168.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 67 67 17
PDF Downloads 58 58 14

Drought Analysis Based on a Marked Cluster Poisson Model

View More View Less
  • 1 Departamento de Métodos Estadísticos, Universidad de Zaragoza, Zaragoza, Spain
© Get Permissions
Restricted access

Abstract

This paper presents an operational definition of drought events based on an “excess over threshold” approach applied on rainfall series and develops a stochastic model for describing droughts defined in that way. The model consists of a Poisson cluster process to represent drought occurrence and a marked process composed of three series of random variables (duration, deficit, and maximum intensity) to describe drought severity; it is theoretically justified, and adequate procedures to check its validity are suggested and applied on five Spanish rainfall series. Useful parameters for the design and planning of water resource systems, together with their confidence intervals, are estimated from the model.

Corresponding author address: Ana C. Cebrián, Departamento de Métodos Estadísticos, Universidad de Zaragoza, Ed. Matemáticas, Pedro Cerbuna 12, Zaragoza 50009, Spain. Email: acebrian@unizar.es

Abstract

This paper presents an operational definition of drought events based on an “excess over threshold” approach applied on rainfall series and develops a stochastic model for describing droughts defined in that way. The model consists of a Poisson cluster process to represent drought occurrence and a marked process composed of three series of random variables (duration, deficit, and maximum intensity) to describe drought severity; it is theoretically justified, and adequate procedures to check its validity are suggested and applied on five Spanish rainfall series. Useful parameters for the design and planning of water resource systems, together with their confidence intervals, are estimated from the model.

Corresponding author address: Ana C. Cebrián, Departamento de Métodos Estadísticos, Universidad de Zaragoza, Ed. Matemáticas, Pedro Cerbuna 12, Zaragoza 50009, Spain. Email: acebrian@unizar.es

Save