• ASCE Task Committee, 1999: Geographic information system modules and distributed models of the watershed. ASCE, Reston, VA, 120 pp.

  • Bell, V. A., , and Moore R. J. , 2000: The sensitivity of catchment runoff models to rainfall data at different spatial scales. Hydrol. Earth Syst. Sci., 4 , 653667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, R., , Pellerin P. , , Kouwen N. , , Ritchie H. , , Donaldson N. , , Joe P. , , and Soulis E. D. , 2000: Toward the use of coupled atmospheric and hydrologic models at regional scales. Mon. Wea. Rev., 128 , 16811705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., , Corral C. , , Sanchéz-Diezma R. , , and Sempere-Torres D. , 2005: Hydrological validation of a radar-based nowcasting technique. J. Hydrometeor., 6 , 532548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, A. A., , and Smith J. A. , 1994: The hydrometeorological environment of extreme rainstorms in the Southern Plains of the United States. J. Appl. Meteor., 33 , 14181431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and Collier C. G. , 1989: Nowcasting of precipitation systems. Rev. Geophys., 27 , 345370.

  • Carpenter, T. M., , Georgakakos K. P. , , and Sperfslagea J. A. , 2001: On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use. J. Hydrol., 253 , 169193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, C. G., 1991: The combined use of weather radar and mesoscale numerical model data for short-period rainfall forecasting. Hydrological Application of Weather Radar, I. D. Cluckie and C. G. Collier, Eds., E. Horwood, 331–348.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., , and Krzysztofowicz R. , 2000: Quantitative precipitation forecasting. J. Hydrol., 239 , 12.

  • Dixon, M., , and Weiner G. , 1993: TITAN: Thunderstorm identification, tracking, analysis and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10 , 785797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolciné, L., , Andriue H. , , Sempere-Torres D. , , and Creutin D. , 2001: Flash flood forecasting with coupled precipitation model in mountainous Mediterranean basin. J. Hydrol. Eng., 6 , 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and Coauthors, 2000: Hydrological aspects of weather prediction and flood warning: Report of the Ninth Prospectus Development Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 81 , 26652680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupree, W. J., , Wolfson M. M. , , Johnson R. , , Theriault K. E. , , Forman B. E. , , Boldi R. A. , , and Wilson C. , 2002: Forecasting convective weather using multi-scale detectors and weather classification. Preprints, 10th Conf. on Aviation, Range, Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., CD-ROM, 5.5.

  • Ganguly, A. R., , and Bras R. L. , 2003: Distributed quantitative precipitation forecasting using information from radar and numerical weather prediction models. J. Hydrometeor., 4 , 11681180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrote, L., , and Bras R. L. , 1995: A distributed model for real-time flood forecasting using digital elevation models. J. Hydrol., 167 , 279306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., 1986: A generalized stochastic hydrometeorological model for flood and flash-flood forecasting. 2. Case studies. Water Resour. Res., 22 , 20962106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1998: Nimrod: A system for generating automated very short range forecasts. Meteor. Appl., 5 , 116.

  • Gourley, J. J., , and Vieux B. E. , 2005: A method for evaluating the accuracy of quantitative precipitation estimates from a hydrologic modeling perspective. J. Hydrometeor., 6 , 115133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grassotti, C., , Hoffman R. N. , , Vivoni E. R. , , Entekhabi D. , , Ivanov V. Y. , , and Van Horne M. P. , 2002: Real-time hydrometeorological forecasting from radar and satellite observations. Final Rep., ARO DAAD-19-00-C-0114, 85 pp.

  • Grassotti, C., , Hoffman R. N. , , Vivoni E. R. , , and Entekhabi D. , 2003: Multiple timescale intercomparison of two radar products and rain gauge observations over the Arkansas–Red River basin. Wea. Forecasting, 18 , 12071229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., , and Krajewski W. F. , 2000: A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. J. Hydrol., 239 , 6984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and Nehrkorn T. , 1993: A short-term cloud forecast scheme using cross correlations. Wea. Forecasting, 8 , 401411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., , Vivoni E. R. , , Bras R. L. , , and Entekhabi D. , 2004a: Catchment hydrologic response with a fully-distributed triangulated irregular network model. Water Resour. Res., 40 .W11102, doi:10.1029/2004WR003218.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., , Vivoni E. R. , , Bras R. L. , , and Entekhabi D. , 2004b: Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: A fully-distributed physically-based approach. J. Hydrol., 298 , 80111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D., , Smith M. , , Koren V. , , and Finnerty B. , 1997: Comparing mean areal precipitation estimates from NEXRAD and rain gauge networks. J. Hydrol. Eng., 4 , 117124.

    • Search Google Scholar
    • Export Citation
  • Kirpich, Z. P., 1940: Time of concentration of small agricultural watersheds. Civ. Eng., 10 , 362.

  • Kumler, M. P., 1994: An intensive comparison of triangulated irregular networks (TINs) and digital elevation models (DEMs). Cartographica, 31 , 2. 148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and McCabe G. J. , 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35 , 233241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Njissen B. , 2002: A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEnery, J., , Ingram J. , , Duan Q. , , Adams T. , , and Anderson L. , 2005: NOAA’s Advanced Hydrologic Prediction Service. Bull. Amer. Meteor. Soc., 86 , 375385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecklenburg, S., , Bell V. A. , , Moore R. J. , , and Joss J. , 2000: Interfacing an enhanced radar echo tracking algorithm with a rainfall-runoff model for real-time flood forecasting. Phys. Chem. Earth B, 25 , 13291333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mimikou, M. A., , and Baltas E. A. , 1996: Flood forecasting based on radar rainfall measurements. J. Water Resour. Plan. Manage., 122 , 151156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. J., , Bell V. A. , , and Jones D. A. , 2005: Forecasting for flood warning. C. R. Geosci., 337 , 203217.

  • Pereira Fo, A. J., , Crawford K. C. , , and Stensrud D. J. , 1999: Mesoscale precipitation fields. Part II: Hydrometeorologic modeling. J. Appl. Meteor., 38 , 102125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessoa, M. L., , Bras R. L. , , and Williams E. R. , 1993: Use of weather radar for flood forecasting in the Sieve basin: A sensitivity analysis. J. Appl. Meteor., 32 , 462475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S. M., , and Maidment D. R. , 1999: Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. J. Hydrol. Eng., 4 , 2. 174182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., , Koren V. , , Smith M. , , Zhang Z. , , Moreda F. , , and Seo D-J. , and D. M. I. P. Participants, 2004: Overall distributed model intercomparison project results. J. Hydrol., 298 , 2760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. M. S., , O’Connell P. E. , , and Hoskings J. R. M. , 1996: Modeling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models. J. Hydrol., 175 , 89111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, V. P., , and Woolhiser D. A. , 2002: Mathematical modeling of watershed hydrology. J. Hydrol. Eng., 7 , 270292.

  • Sivapalan, M. K., , Wood E. F. , , and Beven K. J. , 1987: On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resour. Res., 23 , 22662278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Seo D-J. , , Baeck M. L. , , and Hudlow M. D. , 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32 , 20352045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. T., , and Austin G. L. , 2000: Nowcasting precipitation—A proposal for a way forward. J. Hydrol., 239 , 3445.

  • Tsanis, I. K., , Gad M. A. , , and Donaldson N. T. , 2002: A comparative analysis of rain-gauge and radar techniques for storm kinematics. Adv. Water Resour., 25 , 305316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Horne, M. P., , Vivoni E. R. , , Entekhabi D. , , Hoffman R. N. , , and Grassotti C. , 2003: Short term radar nowcasting for hydrologic applications over the Arkansas–Red River basin. Preprints, 17th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, J4.3.

  • Vivoni, E. R., , Ivanov V. Y. , , Bras R. L. , , and Entekhabi D. , 2004: Generation of triangulated irregular networks based on hydrological similarity. J. Hydrol. Eng., 9 , 288302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., , Ivanov V. Y. , , Bras R. L. , , and Entekhabi D. , 2005: On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrol. Processes, 19 , 21012122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., , Forman B. E. , , Hallowell R. G. , , and Moore M. P. , 1999: The growth and decay storm tracker. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 58–62.

  • Yates, D. N., , Warner T. T. , , and Leavesley G. H. , 2000: Prediction of a flash flood in complex terrain. Part II: A comparison of flood discharge simulations using rainfall input from radar, a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39 , 815825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, C. B., , Bradley A. A. , , Krajewski W. F. , , Kruger A. , , and Morrissey M. L. , 2000: Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting. J. Hydrometeor., 1 , 241254.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 11
PDF Downloads 46 46 11

Extending the Predictability of Hydrometeorological Flood Events Using Radar Rainfall Nowcasting

View More View Less
  • 1 Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 2 Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 3 Atmospheric and Environmental Research, Inc., Lexington, Massachusetts
© Get Permissions
Restricted access

Abstract

The predictability of hydrometeorological flood events is investigated through the combined use of radar nowcasting and distributed hydrologic modeling. Nowcasting of radar-derived rainfall fields can extend the lead time for issuing flood and flash flood forecasts based on a physically based hydrologic model that explicitly accounts for spatial variations in topography, surface characteristics, and meteorological forcing. Through comparisons to discharge observations at multiple gauges (at the basin outlet and interior points), flood predictability is assessed as a function of forecast lead time, catchment scale, and rainfall spatial variability in a simulated real-time operation. The forecast experiments are carried out at temporal and spatial scales relevant for operational hydrologic forecasting. Two modes for temporal coupling of the radar nowcasting and distributed hydrologic models (interpolation and extended-lead forecasting) are proposed and evaluated for flood events within a set of nested basins in Oklahoma. Comparisons of the radar-based forecasts to persistence show the advantages of utilizing radar nowcasting for predicting near-future rainfall during flood event evolution.

Corresponding author address: Enrique R. Vivoni, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, MSEC 244, Socorro, NM 87801. Email: vivoni@nmt.edu

Abstract

The predictability of hydrometeorological flood events is investigated through the combined use of radar nowcasting and distributed hydrologic modeling. Nowcasting of radar-derived rainfall fields can extend the lead time for issuing flood and flash flood forecasts based on a physically based hydrologic model that explicitly accounts for spatial variations in topography, surface characteristics, and meteorological forcing. Through comparisons to discharge observations at multiple gauges (at the basin outlet and interior points), flood predictability is assessed as a function of forecast lead time, catchment scale, and rainfall spatial variability in a simulated real-time operation. The forecast experiments are carried out at temporal and spatial scales relevant for operational hydrologic forecasting. Two modes for temporal coupling of the radar nowcasting and distributed hydrologic models (interpolation and extended-lead forecasting) are proposed and evaluated for flood events within a set of nested basins in Oklahoma. Comparisons of the radar-based forecasts to persistence show the advantages of utilizing radar nowcasting for predicting near-future rainfall during flood event evolution.

Corresponding author address: Enrique R. Vivoni, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, MSEC 244, Socorro, NM 87801. Email: vivoni@nmt.edu

Save