• Adams, D. K., , and Comrie A. C. , 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Anderson, T. W., , and Goodman L. A. , 1957: Statistical inference about Markov chains. Ann. Math. Stat., 28 , 89110.

  • Buishand, T. A., 1978: Some remarks on the use of daily rainfall models. J. Hydrol., 36 , 295308.

  • Carleton, A. M., , Carpenter D. A. , , and Weber P. J. , 1990: Mechanisms of interannual variability of the Southwest United States summer rainfall maximum. J. Climate, 3 , 9991015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, R., , and Stern R. D. , 1982: Fitting models to daily rainfall data. J. Appl. Meteor., 21 , 10241031.

  • Comrie, A. C., , and Glenn E. C. , 1998: Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Res., 10 , 201215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dempster, A. P., , Laird N. , , and Rubin D. B. , 1977: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Stat. Soc., 39B , 138.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , Maddox R. A. , , Howard K. , , and Reyes S. , 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Eischeid, J. K., , Pasteris P. A. , , Diaz F. H. , , Plantico S. M. , , and Lott J. N. , 2000: Creating a serially complete, national daily time series of temperature and precipitation for the Western United States. J. Appl. Meteor., 39 , 15801591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, A. W., , and Hawkins T. W. , 2001: An apparent atmospheric teleconnection between snow cover and the North American Monsoon. Geophys. Res. Lett., 28 , 26532656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrara, J. D., , and Yu J-Y. , 2003: Interannual variations in the Southwest U.S. monsoon and sea surface temperature anomalies: A general circulation model study. J Climate, 16 , 17031720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., , and Lettenmaier D. P. , 1987: A Markov renewal model for rainfall occurrences. Water Resour. Res., 23 , 857884.

  • Gates, P., , and Tong H. , 1976: On Markov chain modeling to some weather data. J. Appl. Meteor., 15 , 11451151.

  • Gregory, J. M., , Wigley T. M. L. , , and Jones P. D. , 1993: Application of Markov models to area-average daily precipitation series and interannual variability in seasonal totals. Climate Dyn., 8 , 299310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grondona, M. O., , Podesta G. P. , , Bidegain M. , , Marino M. , , and Hordiu H. , 2000: A stochastic precipitation generator conditioned on ENSO phase: A case study in Southeastern South America. J. Climate, 13 , 29732986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrold, T. I., , Sharma A. , , and Sheather S. J. , 2003a: A nonparametric model for stochastic generation of daily rainfall occurrence. Water Resour. Res., 39 .1300, doi:10.1029/2003WR002182.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. I., , Sharma A. , , and Sheather S. J. , 2003b: A nonparametric model for stochastic generation of daily rainfall amounts. Water Resour. Res., 39 .1343, doi:10.1029/2003WR002570.

    • Search Google Scholar
    • Export Citation
  • Hawkins, T. W., , Ellis A. W. , , Skindlov J. A. , , and Reigle D. , 2002: Intra-annual analysis of the North American snow cover–monsoon teleconnection: Seasonal forecast utility. J. Climate, 15 , 17431753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Mo K. C. , , and Yao Y. , 1998: Interannual variability of the U.S. summer precipitation regime with emphasis on the southwestern monsoon. J. Climate, 11 , 25822606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Chen Y. , , and Douglas A. V. , 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12 , 653680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 1977a: An application of chain-dependent processes to meteorology. J. Appl. Prob., 14 , 598603.

  • Katz, R. W., 1977b: Precipitation as a chain-dependent process. J. Appl. Meteor., 16 , 671676.

  • Katz, R. W., , and Parlange M. B. , 1993: Effects of an index of atmospheric circulation on stochastic properties of precipitation. Water Resour. Res., 29 , 23352344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., , and Parlange M. B. , 1998: Overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 11 , 591601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., , and Zheng X. , 1999: Mixture model for overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 12 , 25282537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keatinge, C., 1999: Modeling losses with the mixed exponential distribution. Proc. Casualty Actual. Soc., 86 , 654698.

  • Madden, R. A., , Shea D. J. , , Katz R. W. , , and Kidson J. W. , 1999: The potential long-range predictability of precipitation over New Zealand. Int. J. Climatol., 19 , 405421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLachlan, R. A., , and Krishnan T. , 1997: The EM Algorithm and Extensions. Wiley, 274 pp.

  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17 , 182190.

  • Salvucci, G. D., , and Song C. , 2000: Derived distributions of storm depth and frequency conditioned on monthly total precipitation: Adding value to historical and satellite-derived estimates of monthly precipitation. J. Hydrometeor., 1 , 113120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sansom, J., 1995: Rainfall discrimination and spatial variation using breakpoint data. J. Climate, 8 , 624636.

  • Sansom, J., 1998: A hidden Markov model for rainfall using breakpoint data. J. Climate, 11 , 4253.

  • Sansom, J., , and Thomson P. J. , 1992: Rainfall classification using breakpoint pluviograph data. J. Climate, 5 , 755764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , and Madden R. A. , 1990: Potential for long-range prediction of monthly mean surface temperatures over North American. J. Climate, 3 , 14441451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S. W., , and Kripalani R. H. , 1986: Potential predictability of lower-tropospheric Monsoon circulation and rainfall over India. Mon. Wea. Rev., 114 , 758763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, L. W., , and Schreuder H. T. , 1981: Fitting daily precipitation amounts using the SB distribution. Mon. Wea. Rev., 109 , 25352541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, H. C. S., 1958: A note on the gamma distribution. Mon. Wea. Rev., 86 , 117122.

  • Todorovic, P., , and Woolhiser D. A. , 1975: A stochastic model of n-day precipitation. J. Appl. Meteor., 14 , 1724.

  • Wang, J., , Anderson B. T. , , and Salvucci G. D. , 2006: Stochastic modeling of daily summertime rainfall over the southwestern U.S. Part II: Intraseasonal variability. J. Hydrometeor., submitted.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1989: Conditioning stochastic daily precipitation models on total monthly precipitation. Water Resour. Res., 25 , 14291439.

  • Wilks, D. S., 1992: Adapting stochastic weather generation algorithms for climate change studies. Climate Change, 22 , 6784.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 648 pp.

  • Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210 , 178191.

  • Wilks, D. S., 1999: Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteor., 93 , 153169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolhiser, D. A., , and Roldan J. , 1982: Stochastic daily precipitation models. 2. A comparison of distribution amounts. Water Resour. Res., 18 , 14611468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., , Lettenmaier D. P. , , and Cavazos T. , 2005: Role of antecedent land surface conditions on North American Monsoon Rainfall variability. J. Climate, 18 , 31043121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 1
PDF Downloads 3 3 1

Stochastic Modeling of Daily Summertime Rainfall over the Southwestern United States. Part I: Interannual Variability

View More View Less
  • 1 Department of Geography, Boston University, Boston, Massachusetts
© Get Permissions
Restricted access

Abstract

The interannual variability of summertime daily precipitation at 78 stations in the southwestern United States is studied using chain-dependent models and nonparametric empirical distributions of daily rainfall amounts. Modeling results suggest that a second-order chain-dependent model can optimally portray the temporal structure of the summertime daily precipitation process over the southwestern United States. The unconditioned second-order chain-dependent model, in turn, can explain approximately 75% of the interannual variance in the seasonal total wet days over the region and 83% of the interannual variance in the seasonal total precipitation. In addition, only a small fraction (generally smaller than 20%) of the observed years at any given station show statistically significant changes in the occurrence and intensity characteristics, related to either the number of seasonal total wet days or the distributions of daily rainfall amounts. Investigations of the year-to-year variations in the occurrence and intensity characteristics indicate that both variations are random (on interannual time scales), and they display similar significance in explaining the remaining 17% of interannual variance of seasonal total precipitation over the region. However, numerical tests suggest that the interannual variations of the two are not independent for the summertime monsoon precipitation, and that complex covariability that cannot be described with simple stochastic statistical models may exist between them.

Corresponding author address: Jingyun Wang, Department of Geography, Boston University, 675 Commonwealth Ave., Boston, MA 02115. Email: wjy@bu.edu

Abstract

The interannual variability of summertime daily precipitation at 78 stations in the southwestern United States is studied using chain-dependent models and nonparametric empirical distributions of daily rainfall amounts. Modeling results suggest that a second-order chain-dependent model can optimally portray the temporal structure of the summertime daily precipitation process over the southwestern United States. The unconditioned second-order chain-dependent model, in turn, can explain approximately 75% of the interannual variance in the seasonal total wet days over the region and 83% of the interannual variance in the seasonal total precipitation. In addition, only a small fraction (generally smaller than 20%) of the observed years at any given station show statistically significant changes in the occurrence and intensity characteristics, related to either the number of seasonal total wet days or the distributions of daily rainfall amounts. Investigations of the year-to-year variations in the occurrence and intensity characteristics indicate that both variations are random (on interannual time scales), and they display similar significance in explaining the remaining 17% of interannual variance of seasonal total precipitation over the region. However, numerical tests suggest that the interannual variations of the two are not independent for the summertime monsoon precipitation, and that complex covariability that cannot be described with simple stochastic statistical models may exist between them.

Corresponding author address: Jingyun Wang, Department of Geography, Boston University, 675 Commonwealth Ave., Boston, MA 02115. Email: wjy@bu.edu

Save