• Agriculture Canada Research Branch, 1987: The Canadian System of Soil Classification. 2d. ed. Agriculture Canada Expert Committee on Soil Survey, Agriculture Canada Publication 1646, 164 pp.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., , Pailleux J. , , Thépaut J-N. , , Eyre J. R. , , McNally A. P. , , Kelly G. A. , , and Courtier P. , 1994: Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 120 , 627653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., 2003: Analysis of soil moisture in a mesoscale weather prediction model. Ph.D. thesis, CNRM, Météo-France, Toulouse, France, 169 pp.

  • Balsamo, G., , Bouyssel F. , , Noilhan J. , , Mahfouf J-F. , , Bélair S. , , and Deblonde G. , 2004a: A simplified variational analysis scheme for soil moisture: Developments at Météo-France and MSC. Proc. ECMWF/ELDAS Workshop on Land Surface Assimilation, Reading, United Kingdom, ECMWF, 79–96.

  • Balsamo, G., , Bouyssel F. , , and Noilhan J. , 2004b: A simplified bi-dimensional variational analysis of soil moisture from screen-level observations in a mesoscale numerical weather prediction model. Quart. J. Roy. Meteor. Soc., 130A , 895916.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., , Brown R. , , Mailhot J. , , Bilodeau B. , , and Crevier L-P. , 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4 , 371386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., , Crevier L-P. , , Mailhot J. , , Bilodeau B. , , and Delage Y. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4 , 352370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , Viterbo P. , , Miller M. J. , , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouyssel, F., , Cassé V. , , and Pailleux J. , 1999: Variational surface analysis from screen level atmospheric parameters. Tellus, 51A , 453468.

    • Search Google Scholar
    • Export Citation
  • Calvet, J. C., , and Noilhan J. , 2000: From near-surface to root-zone soil moisture using year-round data. J. Hydrometeor., 1 , 393411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J. C., , Noilhan J. , , and Bessemoulin P. , 1998: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37 , 371386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., , Gravel S. , , Méthot A. , , Patoine A. , , Roch M. , , and Staniforth A. , 1998: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 13731395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Coauthors, 2005: An observing system simulation experiment for Hydros soil moisture products. IEEE Trans. Geosci. Remote Sens., 43 , 12891303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Dolman A. J. , , and Sato N. , 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Gao X. , , and Oki T. , 2002: The Second Global Soil Wetness Project science and implementation plan. IGPO Publication Series 37, 75 pp.

  • Dobson, M. C., , Ulaby F. T. , , Hallikainen M. T. , , and El-Rayes M. A. , 1985: Microwave dielectric behavior of wet soil. Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens., 23 , 3546.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Lindau R. , 1999a: The impact of the SSM/I antenna gain function on land surface parameter retrieval. Geophys. Res. Lett., 26 , 34813484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Simmer C. , 1999b: Up-scaling effects in passive microwave remote sensing: ESTAR 1.4 GHz measurements during SGP97. Geophys. Res. Lett., 26 , 879882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Jackson T. , 2001: Vegetative and atmospheric corrections for soil moisture retrieval from passive microwave remote sensing data. Results from the Southern Great Plains hydrologic experiment 1997. J. Hydrometeor., 2 , 181192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, S., , and Entekhabi D. , 2005: An ensemble-based reanalysis approach to land data assimilation. Water Res. Resour., 41 .W02013, doi:10.1029/2004WR00344.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , and Holtslag A. A. M. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5 , 8699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2004: The Hydrosphere State (Hydros) mission: An Earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens., 42 , 21842195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 1995: Digital Soil Map of the World (DSMW) and derived soil properties. Version 3.5, Food and Agriculture Organization of the United Nations, Rome, Italy, CD-ROM.

  • Ferrazzoli, P., , and Guerriero L. , 2002: Simulating L-band emission of forest in view of future satellite applications. IEEE Trans. Geosci. Remote Sens., 40 , 26922708.

    • Search Google Scholar
    • Export Citation
  • Gao, H., , Wood E. , , Drusch M. , , Crow W. , , and Jackson T. J. , 2004: Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99. J. Hydrometeor., 5 , 4963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., , Dirmeyer P. , , and Oki T. , 2004: Update on the second global soil wetness project (GSWP-2). GEWEX Newsletter, Vol. 14, No. 3, International GEWEX Project Office, Silver Spring, MD, 10.

  • Giard, D., , and Bazile E. , 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128 , 9971015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, R., 2001: Assimilating screen-level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77 , 145154.

  • Hillel, D., 1980a: Fundamentals of Soil Physics. Academic Press, 413 pp.

  • Hillel, D., 1980b: Applications of Soil Physics. Academic Press, 385 pp.

  • Jackson, T. J., , and Schmugge T. J. , 1989: Algorithm for the passive microwave remote sensing of soil moisture. Microwave Radiometry and Remote Sensing Applications, P. Pampaloni, Ed., 3–17.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., , and Schmugge T. J. , 1991: Vegetation effects on the microwave emission of soils. Remote Sens. Environ., 36 , 203212.

  • Kerr, Y., , and Njoku E. G. , 1990: A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sens., 28 , 384393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y., , Waldteufel P. , , Wigneron J-P. , , Font J. , , and Berger M. , 2001: Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirdyashev, K. P., , Chukhlantsev A. A. , , and Shutko A. M. , 1979: Microwave radiation of the Earth’s surface in the presence of a vegetation cover. Radio Eng. Electron. Phys., 24 , 3744.

    • Search Google Scholar
    • Export Citation
  • Klein, L. A., , and Swift C. T. , 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25 , 104111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Liebe, H. J., 1989: MPM—An atmospheric millimeter wave propagation model. Int. J. Infrared Millimeter Waves, 10 , 631650.

  • Mahfouf, J-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30 , 15341547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Lacarrère P. , 1995: GCM grid-scale evaporation from mesoscale modeling. J. Climate, 8 , 206223.

  • Noilhan, J., , and Mahfouf J-F. , 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13 , 145159.

  • O’Neill, P. E., , Crow W. T. , , Hsu A. Y. , , Jackson T. J. , , Njoku E. , , Chan T. , , and Shi J. C. , 2004: Comparison of soil moisture retrieval algorithms using simulated Hydros brightness temperatures. Proc. 2004 IGARSS, Vol. 1, Anchorage, AK, IEEE, 336–339.

  • Pellarin, T., and Coauthors, 2003: Two-year global simulation of L-band brightness temperature over land. IEEE Trans. Geosci. Remote Sens., 41 , 21352139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raju, S., , Chanzy A. , , Wigneron J-P. , , Calvet J-C. , , Kerr Y. H. , , and Laguerre L. , 1995: Soil moisture and temperature profiles effects on microwave emission at low frequencies. Remote Sens. Environ., 54 , 8597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, C., , and Milly P. , 2002: A model-based investigation of soil moisture predictability and associated climate predictability. J. Hydrometeor., 3 , 483501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seuffert, G., , Viterbo P. , , Mahfouf J. F. , , Wilker H. , , Drusch M. , , and Calvet J. C. , 2003: Soil moisture analysis combining screen-level parameters and microwave brightness temperature: A test with field data. Geophys. Res. Lett., 30 .1498, doi:10.1029/2003GL017128.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., , Wilker H. , , Viterbo P. , , Drusch M. , , and Mahfouf J-F. , 2004: The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J. Hydrometeor., 5 , 516531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skou, N., 2003: Faraday rotation and L band oceanographic measurements. Radio Sci., 38 .8059, doi:10.1029/2002RS002671.

  • Timbal, B., , Power S. , , Colman R. , , Viviand J. , , and Lirola S. , 2002: Does soil moisture influence climate variability and predictability over Australia? J. Climate, 15 , 12301238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Department of Agriculture, 1994: State soil geographic (STATSGO) data base–data use information. Miscellaneous Publication 1492 (rev. ed.), Natural Resources Conservation Service, Fort Worth, TX, 110 pp.

  • Walker, J. P., , and Houser P. R. , 2004: Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Res., 27 , 785801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmüller, U., , and Mätzler C. , 1999: Rough bare soil reflectivity model. IEEE Trans. Geosci. Remote Sens., 37 , 13911395.

  • Wertz, J. R., , and Larson W. J. , 1991: Space Mission Analysis and Design. Kluwer Academic, 832 pp.

  • Wilheit, T. T., 1978: Radiative transfer in a plane stratified dielectric. IEEE Trans. Geosci. Electron., 16 , 138143.

  • Wilker, H., , Drusch M. , , Seuffert G. , , and Simmer C. , 2006: Effects of the near-surface soil moisture profile on the assimilation of L-band microwave brightness temperature. J. Hydrometeor., 7 , 433442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., , Kumar K. , , and Lau K-M. , 2004: Potential predictability of U.S. summer climate with “perfect” soil moisture. J. Hydrometeor., 5 , 883895.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 3
PDF Downloads 8 8 2

A Global Root-Zone Soil Moisture Analysis Using Simulated L-band Brightness Temperature in Preparation for the Hydros Satellite Mission

View More View Less
  • 1 Meteorological Research Branch, Meteorological Service of Canada, Dorval, Quebec, Canada
© Get Permissions
Restricted access

Abstract

The aim of this study is to test a land data assimilation prototype for the production of a global daily root-zone soil moisture analysis. This system can assimilate microwave L-band satellite observations such as those from the future Hydros NASA mission. The experiments are considered in the framework of the Interaction Soil Biosphere Atmosphere (ISBA) land surface scheme used operationally at the Meteorological Service of Canada for regional and global weather forecasting. A land surface reference state is obtained after a 1-yr global land surface simulation, forced by near-surface atmospheric fields provided by the Global Soil Wetness Project, second initiative (GSWP-2). A radiative transfer model is applied to simulate the microwave L-band passive emission from the surface. The generated brightness temperature observations are distributed in space and time according to the satellite trajectory specified by the Hydros mission. The impact of uncertainties related to the satellite observations, the land surface, and microwave emission models is investigated. A global daily root-zone soil moisture analysis is produced with a simplified variational scheme. The applicability and performance of the system are evaluated in a data assimilation cycle in which the L-band simulated observations, generated from a land surface reference state, are assimilated to correct a prescribed initial root-zone soil moisture error. The analysis convergence is satisfactory in both summer and winter cases. In summer, when considering a 3-K observation error, 90% of land surface converges toward the reference state with a soil moisture accuracy better than 0.04 m3 m−3 after a 4-week assimilation cycle. A 5-K observation error introduces 1-week delay in the convergence. A study of the analysis error statistics is performed for understanding the properties of the system. Special features associated with the interactions between soil water and soil ice, and the presence of soil moisture vertical gradients, are examined.

Corresponding author address: Gianpaolo Balsamo, ECMWF, Shinfield Park, Reading, Berkshire, RG2 9AX, United Kingdom. Email: gianpaolo.balsamo@ecmwf.int

Abstract

The aim of this study is to test a land data assimilation prototype for the production of a global daily root-zone soil moisture analysis. This system can assimilate microwave L-band satellite observations such as those from the future Hydros NASA mission. The experiments are considered in the framework of the Interaction Soil Biosphere Atmosphere (ISBA) land surface scheme used operationally at the Meteorological Service of Canada for regional and global weather forecasting. A land surface reference state is obtained after a 1-yr global land surface simulation, forced by near-surface atmospheric fields provided by the Global Soil Wetness Project, second initiative (GSWP-2). A radiative transfer model is applied to simulate the microwave L-band passive emission from the surface. The generated brightness temperature observations are distributed in space and time according to the satellite trajectory specified by the Hydros mission. The impact of uncertainties related to the satellite observations, the land surface, and microwave emission models is investigated. A global daily root-zone soil moisture analysis is produced with a simplified variational scheme. The applicability and performance of the system are evaluated in a data assimilation cycle in which the L-band simulated observations, generated from a land surface reference state, are assimilated to correct a prescribed initial root-zone soil moisture error. The analysis convergence is satisfactory in both summer and winter cases. In summer, when considering a 3-K observation error, 90% of land surface converges toward the reference state with a soil moisture accuracy better than 0.04 m3 m−3 after a 4-week assimilation cycle. A 5-K observation error introduces 1-week delay in the convergence. A study of the analysis error statistics is performed for understanding the properties of the system. Special features associated with the interactions between soil water and soil ice, and the presence of soil moisture vertical gradients, are examined.

Corresponding author address: Gianpaolo Balsamo, ECMWF, Shinfield Park, Reading, Berkshire, RG2 9AX, United Kingdom. Email: gianpaolo.balsamo@ecmwf.int

Save