• Atlas, R., , Wolfson N. , , and Terry J. , 1993: The effect of SST and soil moisture anomalies on GLA model simulation of the 1988 U.S. summer drought. J. Climate, 6 , 20342048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C., , Viterbo P. , , Miller M. J. , , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , and Sun W-Y. , 1999: Numerical simulation of the 1993 midwestern flood: Local and remote sources of water. J. Geophys. Res., 104 , 1941519423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., , and Entekhabi D. , 1996: Analysis of feedback mechanisms in land–atmosphere interaction. Water Resour. Res., 32 , 13431357.

  • DelSole, T., , and Shukla J. , 2006: Specification of wintertime North American surface temperature. J. Climate, 19 , 26912716.

  • Diedhiou, A., , and Mahfouf J. F. , 1996: Comparative influence of land and sea surfaces on the Sahelian drought: A numerical study. Ann. Geophys., 14 , 115130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1995: Problems in initializing soil wetness. Bull. Amer. Meteor. Soc., 76 , 22342240.

  • Dirmeyer, P. A., 2000: Using a global soil wetness data set to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2001: Climate drift in a coupled land–atmosphere model. J. Hydrometeor., 2 , 89100.

  • Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. J. Hydrometeor., 4 , 599610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2005: The land surface contribution to the potential predictability of boreal summer season climate. J. Hydrometeor., 6 , 618632.

  • Dirmeyer, P. A., , and Zeng F. J. , 1999a: An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78, 25 pp. [Available from Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Dirmeyer, P. A., , and Zeng F. J. , 1999b: Precipitation infiltration in the simplified SiB land surface scheme. J. Meteor. Soc. Japan, 77 , 291303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , and Tan L. , 2001: A multi-decadal global land-surface data set of state variables and fluxes. COLA Tech. Rep. 102, 43 pp. [Available from Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Dirmeyer, P. A., , and Zhao M. , 2004: Flux replacement as a method to diagnose coupled land–atmosphere model feedback. J. Hydrometeor., 5 , 10341048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Dolman A. J. , , and Sato N. , 1999: The Global Soil Wetness Project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Zeng F. J. , , Ducharne A. , , Morrill J. C. , , and Koster R. D. , 2000: The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeor., 1 , 121134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Fennessy M. J. , , and Marx L. , 2003: Low skill in dynamical prediction of boreal summer climate: Grounds for looking beyond sea surface temperature. J. Climate, 16 , 9951002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. J. Climate, 15 , 701720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2003: Assessing the influence of soil moisture on seasonal climate variability with AGCMs. J. Hydrometeor., 4 , 10441066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., , Chauvin F. , , and Broqua H. , 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14 , 23812403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., , and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garric, G., , Douville H. , , and Déqué M. , 2002: Prospects for improved seasonal predictions of monsoon precipitation over Sahel. Int. J. Climatol., 22 , 331345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

  • Kanamitsu, M., , Lu C-H. , , Schemm J. , , and Ebisuzaki W. , 2003: The predictability of soil moisture and near-surface temperature in hindcasts of the NCEP seasonal forecast model. J. Climate, 16 , 510521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., and Coauthors, 1997: Formulation. Vol. 1. The COLA atmosphere–biosphere general circulation model, COLA Tech. Rep. 51, 46 pp. [Available from Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Koster, R. D., , and Suarez M. J. , 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4 , 408423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Dirmeyer P. A. , , Hahmann A. N. , , Ijpelaar R. , , Tyahla L. , , Cox P. , , and Suarez M. J. , 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3 , 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Suarez M. J. , , Higgins R. W. , , and Van den Dool H. , 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 .1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

  • Paegle, J., , Mo K. C. , , and Nogues-Paegle J. , 1996: Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev., 124 , 345361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., , and Mocko D. M. , 2003: The impact of snow conditions in spring dynamical seasonal predictions. J. Geophys. Res., 108 .8616, doi:10.1029/2002JD003113.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 2002: The causes of differences between equatorial Pacific SST simulations of two coupled ocean–atmosphere general circulation models. J. Climate, 15 , 449469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Sud, Y. C., , Mocko D. M. , , Lau K-M. , , and Atlas R. , 2003: Simulating the Midwestern U.S. drought of 1988 with a GCM. J. Climate, 16 , 39463965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timbal, B., , Power S. , , Colman R. , , Viviand J. , , and Lirola S. , 2002: Does soil moisture influence climate variability and predictability over Australia? J. Climate, 15 , 12301238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., , and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., , Sellers P. J. , , Kinter J. L. , , and Shukla J. , 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., , Zeng F. J. , , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties—A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., , Kumar A. , , Wang W. , , Juang H-M. H. , , and Kanamitsu M. , 2001: Snow–albedo feedback and seasonal climate variability over North America. J. Climate, 14 , 42454248.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 16
PDF Downloads 35 35 13

The Hydrologic Feedback Pathway for Land–Climate Coupling

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
© Get Permissions
Restricted access

Abstract

The impact of improvements in land surface initialization and specification of observed rainfall in global climate model simulations of boreal summer are examined to determine how the changes propagate around the hydrologic cycle in the coupled land–atmosphere system. On the global scale, about 70% of any imparted signal in the hydrologic cycle is lost in the transition from atmosphere to land, and 70% of the remaining signal is lost from land to atmosphere. This means that globally, less than 10% of the signal of any change survives the complete circuit of the hydrologic cycle in this model. Regionally, there is a great deal of variability. Specification of observed precipitation to the land component of the climate model strongly communicates its signal to soil wetness in rainy regions, but predictive skill in evapotranspiration arises primarily in dry regions. A maximum in signal transmission to model precipitation exists in between, peaking where mean rainfall rates are 1.5–2 mm day−1. It appears that the nature of the climate system inherently limits to these regions the potential impact on prediction of improvements in the ability of models to simulate the water cycle. Land initial conditions impart a weaker signal on the system than replacement of precipitation, so a weaker response is realized in the system, focused mainly in dry regions.

Corresponding author address: Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705-3106. Email: dirmeyer@cola.iges.org

Abstract

The impact of improvements in land surface initialization and specification of observed rainfall in global climate model simulations of boreal summer are examined to determine how the changes propagate around the hydrologic cycle in the coupled land–atmosphere system. On the global scale, about 70% of any imparted signal in the hydrologic cycle is lost in the transition from atmosphere to land, and 70% of the remaining signal is lost from land to atmosphere. This means that globally, less than 10% of the signal of any change survives the complete circuit of the hydrologic cycle in this model. Regionally, there is a great deal of variability. Specification of observed precipitation to the land component of the climate model strongly communicates its signal to soil wetness in rainy regions, but predictive skill in evapotranspiration arises primarily in dry regions. A maximum in signal transmission to model precipitation exists in between, peaking where mean rainfall rates are 1.5–2 mm day−1. It appears that the nature of the climate system inherently limits to these regions the potential impact on prediction of improvements in the ability of models to simulate the water cycle. Land initial conditions impart a weaker signal on the system than replacement of precipitation, so a weaker response is realized in the system, focused mainly in dry regions.

Corresponding author address: Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705-3106. Email: dirmeyer@cola.iges.org

Save