• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 1999: Climate change and global water resources. Global Environ. Change, 9 , S31S49.

  • Arnell, N. W., 2004: Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ. Change, 14 , 3152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 2005: Implications of climate change for freshwater inflows to the Arctic Ocean. J. Geophys. Res., 110 .D07105, doi:10.1029/2004JD005348.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., , Livermore M. J. L. , , Kovats S. , , Levy P. E. , , Nicholls R. , , Parry M. L. , , and Gaffin S. R. , 2004: Climate and socio-economic scenarios for global-scale climate change impacts assessments: Characterising the SRES storylines. Global Environ. Change, 14 , 320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., , and Boer G. J. , 1999: A variable velocity flow routing algorithm for GCMs. J. Geophys. Res., 104 , D24. 3096530979.

  • Arora, V. K., , and Boer G. J. , 2001: Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res., 106 , D4. 33353348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 510 pp.

  • Fritsch, J. M., , Hilliker J. , , Ross J. , , and Vislocky R. L. , 2000: Model consensus. Wea. Forecasting, 15 , 571582.

  • Giorgi, F., , and Mearns L. O. , 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Average” (REA) method. J. Climate, 15 , 11411158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, M. S. J., , Palmer T. N. , , Richardson D. S. , , and Buizza R. , 1999: Analysis and model dependencies in medium-range ensembles: Two transplant case-studies. Quart. J. Roy. Meteor. Soc., 125 , 24872515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Ding Y. , , Griggs D. J. , , Noguer M. , , van der Linden P. J. , , and Xiaosu D. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , Kishtawal C. M. , , LaRow T. E. , , Bachiochi D. R. , , Zhanf Z. , , Willifor C. E. , , Gadgil S. , , and Surendran S. , 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., , Milly P. C. D. , , and Wetherald R. , 2004: Simulated long-term changes in river discharge and soil moisture due to global warming. Hydrol. Sci. Bull., 49 , 625642.

    • Search Google Scholar
    • Export Citation
  • McCarthy, J. M., , Canziani O. F. , , Leary N. A. , , Dokken D. J. , , and White K. S. , 2001: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 1000 pp.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , Covey C. , , McAvaney B. , , Latif M. , , and Stouffer R. J. , 2005: Overview of the coupled model intercomparison project. Bull. Amer. Meteor. Soc., 86 , 8993.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , Wetherald R. T. , , Dunne K. A. , , and Delworth T. L. , 2002: Increasing risk of great floods in a changing climate. Nature, 415 , 514517.

  • Min, S-K., , Park E-H. , , and Kwon W-T. , 2004: Future projection of East Asian climate change from multi-AOGCM ensemble of IPCC SRES scenario simulations. J. Meteor. Soc. Japan, 82 , 11871211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., , and Swart R. , 2000: Emissions Scenarios. Cambridge University Press, 570 pp.

  • Nijssen, B., , O’Donnell G. M. , , Lettenmaier D. P. , , Lohmann D. , , and Wood E. F. , 2001: Predicting the discharge of global rivers. J. Climate, 14 , 33073323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., , and Sud Y. C. , 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Oki, T., , Nishimura T. , , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., , Agata Y. , , Kanae S. , , Saruhashi T. , , and Musiake K. , 2003: Global water resources assessment under climatic change in 2050 using TRIP. IAHS Publ., 280 , 124133.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , Branković Č , , and Richardson D. S. , 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integration. Quart. J. Roy. Meteor. Soc., 126 , 20122033.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., , Holmes R. M. , , McClelland J. W. , , Vörösmarty C. J. , , Lammers R. B. , , Shiklomanov A. I. , , Shiklomanov I. A. , , and Rahmstorf S. , 2002: Increasing river discharge to the Arctic Ocean. Science, 298 , 21712173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seckler, D., , Barker R. , , and Amarasinghe U. , 1999: Water scarcity in the twenty-first century. Water Resour. Dev., 15 , 2942.

  • Vörösmarty, C. J., , Green P. , , Salisbury J. , , and Lammers R. B. , 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289 , 284288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., , Wood R. , , and Stott P. , 2005: Human influence on increasing Arctic river discharges. Geophys. Res. Lett., 32 .L02703, doi:10.1029/2004GL021570.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 435 109
PDF Downloads 367 367 105

Impact of Climate Change on River Discharge Projected by Multimodel Ensemble

View More View Less
  • 1 Meteorological Research Institute, Tsukuba, and CREST, Japan Science and Technology Agency, Kawaguchi, Japan
  • 2 Meteorological Research Institute, Tsukuba, Japan
  • 3 Institute of Industrial Science, University of Tokyo, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

This study investigates the projections of river discharge for 24 major rivers in the world during the twenty-first century simulated by 19 coupled atmosphere–ocean general circulation models based on the Special Report on Emissions Scenarios A1B scenario. To reduce model bias and uncertainty, a weighted ensemble mean (WEM) is used for multimodel projections. Although it is difficult to reproduce the present river discharge in any single model, the WEM results produce more accurate reproduction for most rivers, except those affected by anthropogenic water usage. At the end of the twenty-first century, the annual mean precipitation, evaporation, and runoff increase in high latitudes of the Northern Hemisphere, southern to eastern Asia, and central Africa. In contrast, they decrease in the Mediterranean region, southern Africa, southern North America, and Central America. Although the geographical distribution of the changes in precipitation and runoff tends to coincide with that in the river discharge, it should be emphasized that the change in runoff at the upstream region affects the river flow in the downstream region. In high-latitude rivers (Amur, Lena, MacKenzie, Ob, Yenisei, and Yukon), the discharge increases, and the peak timing shifts earlier because of an earlier snowmelt caused by global warming. Discharge tends to decrease for the rivers in Europe to the Mediterranean region (Danube, Euphrates, and Rhine), and southern United Sates (Rio Grande).

Corresponding author address: Dr. Akio Kitoh, Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. Email: kitoh@mri-jma.go.jp

Abstract

This study investigates the projections of river discharge for 24 major rivers in the world during the twenty-first century simulated by 19 coupled atmosphere–ocean general circulation models based on the Special Report on Emissions Scenarios A1B scenario. To reduce model bias and uncertainty, a weighted ensemble mean (WEM) is used for multimodel projections. Although it is difficult to reproduce the present river discharge in any single model, the WEM results produce more accurate reproduction for most rivers, except those affected by anthropogenic water usage. At the end of the twenty-first century, the annual mean precipitation, evaporation, and runoff increase in high latitudes of the Northern Hemisphere, southern to eastern Asia, and central Africa. In contrast, they decrease in the Mediterranean region, southern Africa, southern North America, and Central America. Although the geographical distribution of the changes in precipitation and runoff tends to coincide with that in the river discharge, it should be emphasized that the change in runoff at the upstream region affects the river flow in the downstream region. In high-latitude rivers (Amur, Lena, MacKenzie, Ob, Yenisei, and Yukon), the discharge increases, and the peak timing shifts earlier because of an earlier snowmelt caused by global warming. Discharge tends to decrease for the rivers in Europe to the Mediterranean region (Danube, Euphrates, and Rhine), and southern United Sates (Rio Grande).

Corresponding author address: Dr. Akio Kitoh, Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. Email: kitoh@mri-jma.go.jp

Save