• Alvala, R. C. S., and Coauthors, 2002: Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondônia. J. Geophys. Res., 107 .8043, doi:10.129/2001JD000599.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Pielke R. A. , 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical-models and its impact on regional meteorology. Mon. Wea. Rev., 117 , 21132136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Liu Y. Q. , 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101 , 74997518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Nobre C. A. , 2002: The Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA). J. Geophys. Res., 107 .8034, doi:10.1029/2002JD002507.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Werth D. , 2005: Global hydroclimatological teleconnections resulting from tropical deforestation. J. Hydrometeor., 6 , 134145.

  • Avissar, R., , Eloranta E. W. , , Gurer K. , , and Tripoli G. J. , 1998: An evaluation of the large-eddy simulation option of the regional atmospheric modeling system in simulating a convective boundary layer: A FIFE case study. J. Atmos. Sci., 55 , 11091130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., , Silva Dias P. L. , , Silva Dias M. A. , , and Nobre C. A. , 2002: The Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA): Insights and future research needs. J. Geophys. Res., 107 .8086, doi:10.129/2002JD002704.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., , and Avissar R. , 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107 .8037, doi:10.129/2000JD000266.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , Viterbo P. , , Miller M. J. , , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and Jakob C. , 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107 .8045, doi:10.129/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , Ball J. H. , , Beljaars A. C. M. , , Miller M. J. , , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 , 72097225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , Ball J. H. , , and Fuentes J. , cited. 2002: Calibration and correction of LBA/TRMM ABRACOS pasture site merged dataset. [Available online at http://lba.cptec.inpe.br.].

  • Calvet, J. C., , Alvala R. C. S. , , Jaubert G. , , Delire C. , , Nobre C. , , Wright I. , , and Noilhan J. , 1997: Mapping surface parameters for mesoscale modeling in forested and deforested southwestern Amazonia. Bull. Amer. Meteor. Soc., 78 , 413423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , Cifelli R. , , Petersen W. , , and Rutledge S. , cited. 2000: TRMM–LBA rainfall estimation using the S-POL radar. [Available online at http:/lradarmet.atmos.colostate.edu/trmm_lba/spol_rain_info/PrelimRptLBASPOLrain.htm.].

  • Chang, J. T., , and Wetzel P. J. , 1991: Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment: A numerical case study. Mon. Wea. Rev., 119 , 13681390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Avissar R. , 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33 , 13231340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., , and Cotton W. R. , 2004: Sensitivity of a cloud-resolving simulation of the genesis of a mesoscale convective system to horizontal heterogeneities in soil moisture initialization. J. Hydrometeor., 5 , 934958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S. C., , Nunes A. M. B. , , and Cavalcanti I. F. A. , 2000: Extended range forecasts over South America using the regional ETA model. J. Geophys. Res., 105 , 1014710160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S. C., , Tanajura C. A. S. , , Xue Y. K. , , and Nobre C. A. , 2002: Validation of the coupled ETA/SSiB model over South America. J. Geophys. Res., 107 .8088, doi:10.129/2000JD000270.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 529.

  • Cutrim, E., , Martin D. W. , , and Rabin R. , 1995: Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteor. Soc., 76 , 18011805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, T. E., 1993: Hydraulic lift and water use by plants: Implications for water balance, performance, and plant–plant interactions. Oecologia, 95 , 565574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Donner, L. J., , Seman C. J. , , and Hemler R. S. , 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mosescale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14 , 34443463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., , Fulakeza M. , , and Lonergan P. , 2002: Dynamic downscaling of seasonal climate predictions over Brazil. J. Climate, 15 , 34113426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durieux, L., , Machado L. A. T. , , and Laurent H. , 2003: The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sens. Environ., 86 , 132140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1996: Role of vegetation in sustaining large-scale atmospheric circulations in the tropics. J. Geophys. Res., 101 , 42554268.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emori, S., 1998: The interaction of cumulus convection with soil moisture distribution: An idealized simulation. J. Geophys. Res., 103 , 88738884.

  • Gandu, A. W., , Cohen J. C. P. , , and Souza J. R. S. , 2004: Simulation of deforestation in eastern Amazonia using a high-resolution model. Theor. Appl. Climatol., 78 , 123135.

    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., , and Nobre C. A. , 1997: Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bull. Amer. Meteor. Soc., 78 , 823830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., , Roy S. B. , , and Avissar R. , 2000: An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations. J. Atmos. Sci., 57 , 334351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulding, M., , Barthem R. , , and Ferreira E. J. G. , 2003: The Smithsonian Atlas of the Amazon. Smithsonian Books, 253 pp.

  • Halverson, J. B., , Rickenbach T. , , Roy B. , , Pierce H. , , and Williams E. , 2002: Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130 , 14931509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season arctic stratus. Ph.D. dissertation, Colorado State University, 289 pp.

  • Hasler, N., , Avissar R. , , and Liston G. E. , 2005: Issues in simulating the annual precipitation of a semi-arid region in central Spain. J. Hydrometeor., 6 , 409422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , and Pitman A. J. , 2002: Comments on “Suppressing impacts of the Amazonian deforestation by the global circulation change.”. Bull. Amer. Meteor. Soc., 83 , 16571661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , McGuffie K. , , and Zhang H. , 2002: Stable isotopes as validation tools for global climate model predictions of the impact of Amazonian deforestation. J. Climate, 15 , 26642677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , Pechmann J. B. , , Hahmann A. N. , , and Geisler J. E. , 1994: Simulations of the Amazon Basin circulation with a regional model. J. Climate, 7 , 5671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • INPE, cited. 2002: Monitoring the Brazilian Amazon gross deforestation. [Available online at http://www.grid.inpe.br/amz/prodes2000/html/pag_2.htm.].

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Klemp, J. B., , and Wilhelmson R. B. , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurent, H., , Machado L. A. T. , , Morales C. A. , , and Durieux L. , 2002: Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J. Geophys. Res., 107 .8054, doi:10.1029/2001JD000337.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , and Pielke R. A. , 2001: A climate version of the regional atmospheric modeling system. Theor. Appl. Climatol., 68 , 155173.

  • Liu, Y. Q., , Weaver C. P. , , and Avissar R. , 1999: Towards a parameterization of mesoscale fluxes and moist convection induced by landscape heterogeneity. J. Geophys. Res., 104 , 1951519533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic non-periodic flow. J. Atmos. Sci., 20 , 131140.

  • Louis, J. F., 1979: Parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Lynn, B. H., , Abramopoulos F. , , and Avissar R. , 1995: Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs. J. Climate, 8 , 932951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and Yamada T. , 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , Walko R. L. , , Harrington J. Y. , , and Cotton W. R. , 1997: New RAMS cloud microphysics parameterization. 2. The two-moment scheme. Atmos. Res., 45 , 339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., , Dirmeyer P. A. , , Kirtman B. P. , , Juang H. M. H. , , and Kanamitsu M. , 2002: Regional simulation of interannual variability over South America. J. Geophys. Res., 107 .8036, doi:10.129/2001JD900216.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, U. S., , Lawton R. O. , , Welch R. M. , , and Pielke R. A. , 2003: Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geophys. Res., 108 .4206, doi:10129/2001JD001135.

    • Search Google Scholar
    • Export Citation
  • NCAR, cited. 1999: SPOL TRMM-LBA Brazil 1999. [Available online at http://www.atd.ucar.edu.].

  • Negri, A. J., , Adler R. F. , , Xu L. M. , , and Surratt J. , 2004: The impact of Amazonian deforestation on dry season rainfall. J. Climate, 17 , 13061319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nepstad, D. C., and Coauthors, 1994: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372 , 666669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., , Sellers P. J. , , and Shukla J. , 1991: Amazonian deforestation and regional climate change. J. Climate, 4 , 957988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Pielke, R. A., , Lee T. J. , , Copeland J. H. , , Eastman J. L. , , Ziegler C. L. , , and Finley C. A. , 1997: Use of USGS-provided data to improve weather and climate simulations. Ecol. Appl., 7 , 321.

    • Search Google Scholar
    • Export Citation
  • Qian, J. H., , Tao W. K. , , and Lau K. M. , 2004: Mechanisms for torrential rain associated with the mei-yu development during SCSMEX 1998. Mon. Wea. Rev., 132 , 327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., , Cavalcanti I. F. A. , , and Hada K. , 1996: Annual variation of rainfall over Brazil and water vapor characteristics over South America. J. Geophys. Res., 101 , 2653926551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richey, J. E., , Victoria R. L. , , Salati E. , , and Forsberg B. R. , 1991: The biogeochemistry of a major river system: The Amazon case study. Biogeochemistry of Major World Rivers, J. E. Richey, Ed., John Wiley & Sons, 57–74.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132 , 12011219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., and Coauthors, 2003: International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America. J. Geophys. Res., 108 .4425, doi:10.1029/2002JD003201.

    • Search Google Scholar
    • Export Citation
  • Salvador, R., , Calbo J. , , and Millan M. M. , 1999: Horizontal grid size selection and its influence on mesoscale model simulations. J. Appl. Meteor., 38 , 13111329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A., , and Regnier P. , 1996: Simulation of mesoscale circulations in a deforested area of Rondonia in the dry season. Amazonian Deforestation and Climate, R. L. Victoria, Ed., J. Wiley & Sons, 531–547.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A., and Coauthors, 2002: A case study of convective organization into precipitating lines in the Southwest Amazon during the WETAMC and TRMM-LBA. J. Geophys. Res., 107 .8078, doi:10.129/2001JD000375.

    • Search Google Scholar
    • Export Citation
  • Souza, E. P., , Renno N. O. , , and Silva Dias M. A. , 2000: Convective circulations induced by surface heterogeneities. J. Atmos. Sci., 57 , 29152922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , Chao W. C. , , and Walker G. K. , 1993: Dependence of rainfall on vegetation—Theoretical considerations, simulation experiments, observations, and inferences from simulated atmospheric soundings. J. Arid Environ., 25 , 518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takle, E. S., and Coauthors, 1999: Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results. J. Geophys. Res., 104 , 1944319461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanajura, C. A. S., 1996: Modeling and analysis of the South American summer climate. Ph.D. thesis, University of Maryland, 164 pp.

  • Vital, H., , and Stattegger K. , 2000: Sediment dynamics in the lowermost Amazon. J. Coastal Res., 16 , 316328.

  • Walko, R. L., , Cotton W. R. , , Meyers M. P. , , and Harrington J. Y. , 1995: New RAMS cloud microphysics parameterization. 1. The single-moment scheme. Atmos. Res., 38 , 2962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000a: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39 , 931944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., , Cotton W. R. , , Feingold G. , , and Stevens B. , 2000b: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53 , 171183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. F., , Bras R. L. , , and Eltahir E. A. B. , 2000: The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J. Hydrometeor., 1 , 267286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. Southern Great Plains during summer. Part I: Case studies. J. Hydrometeor., 5 , 12231246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., , and Avissar R. , 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc., 82 , 269281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and Klemp J. B. , 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , Skamarock W. C. , , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werth, D., , and Avissar R. , 2002: The local and global effects of Amazon deforestation. J. Geophys. Res., 107 .8087, doi:10.129/2001JD000717.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 4
PDF Downloads 15 15 4

The Hydrometeorology of a Deforested Region of the Amazon Basin

View More View Less
  • 1 Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina
© Get Permissions
Restricted access

Abstract

A series of numerical simulations were performed to evaluate the capability of the Regional Atmospheric Modeling System (RAMS) to simulate the evolution of convection in a partly deforested region of the Amazon basin during the rainy season, and to elucidate some of the complex land–atmosphere interactions taking place in that region. Overall, it is demonstrated that RAMS can simulate properly the domain-average accumulated rainfall in Rondônia, Brazil, when provided with reliable initial profiles of atmospheric relative humidity and soil moisture. It is also capable of simulating important feedbacks involving the energy partition at the ground surface and the formation of convection. In general, more water in the soil and/or the atmosphere produces more rainfall. However, these conditions affect the onset of rainfall in opposite ways; while higher atmospheric relative humidity leads to early rainfall, higher soil moisture delays its formation. As compared to stratiform clouds, which tend to cover a large area, convective clouds are localized and they let relatively more solar radiation reach the ground surface. As a result, a stronger sensible heat flux is released at the ground surface, which enhances the atmospheric instability and reinforces convection. Simulations using horizontal grid elements 2 and 4 km in size show a delay and decrease of rainfall as compared to simulations with high-resolution grids whose elements are not larger than 1 km and, as a result, afflict RAMS performance. It is concluded that RAMS can be used as a reliable tool to simulate the various hydrometeorological processes involved in land-cover changes as a result of deforestation in this region.

* Current affiliation: Department of Meteorology, Universidade Federal do Pará, Belém, Pará, Brazil

Corresponding author address: Dr. Roni Avissar, Department of Civil and Environmental Engineering, Duke University, 123 Hudson Hall, P.O. Box 90287, Durham, NC 27708-0287. Email: avissar@duke.edu

Abstract

A series of numerical simulations were performed to evaluate the capability of the Regional Atmospheric Modeling System (RAMS) to simulate the evolution of convection in a partly deforested region of the Amazon basin during the rainy season, and to elucidate some of the complex land–atmosphere interactions taking place in that region. Overall, it is demonstrated that RAMS can simulate properly the domain-average accumulated rainfall in Rondônia, Brazil, when provided with reliable initial profiles of atmospheric relative humidity and soil moisture. It is also capable of simulating important feedbacks involving the energy partition at the ground surface and the formation of convection. In general, more water in the soil and/or the atmosphere produces more rainfall. However, these conditions affect the onset of rainfall in opposite ways; while higher atmospheric relative humidity leads to early rainfall, higher soil moisture delays its formation. As compared to stratiform clouds, which tend to cover a large area, convective clouds are localized and they let relatively more solar radiation reach the ground surface. As a result, a stronger sensible heat flux is released at the ground surface, which enhances the atmospheric instability and reinforces convection. Simulations using horizontal grid elements 2 and 4 km in size show a delay and decrease of rainfall as compared to simulations with high-resolution grids whose elements are not larger than 1 km and, as a result, afflict RAMS performance. It is concluded that RAMS can be used as a reliable tool to simulate the various hydrometeorological processes involved in land-cover changes as a result of deforestation in this region.

* Current affiliation: Department of Meteorology, Universidade Federal do Pará, Belém, Pará, Brazil

Corresponding author address: Dr. Roni Avissar, Department of Civil and Environmental Engineering, Duke University, 123 Hudson Hall, P.O. Box 90287, Durham, NC 27708-0287. Email: avissar@duke.edu

Save