• Aagaard, K., , and Carmack E. C. , 1989: The role of sea ice and other fresh-water in the arctic circulation. J. Geophys. Res., 94 , C10. 1448514498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., , and Serreze M. C. , 2000: Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. The Freshwater Budget of the Arctic Ocean, E. L. Lewis et al., Eds., Springer, 45–56.

    • Search Google Scholar
    • Export Citation
  • Bayard, D., , Stahli M. , , Parriaux A. , , and Fluhler H. , 2005: The influence of seasonally frozen soil on snowmelt runoff at two Alpine sites in southern Switzerland. J. Hydrol., 209 , 6684.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , Seuna P. , , Lepisto A. , , and Saxena R. , 1992: Particle movement of melt water in a subdrained agricultural basin. J. Hydrol., 135 , 383398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., , Oleson K. W. , , Vertenstein M. , , Levis S. , , Zeng X. , , Dai Y. , , Dickinson R. E. , , and Yang Z-L. , 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15 , 31233149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278 , 15821588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., , Rodell M. , , Wilson C. R. , , and Famiglietti J. S. , 2005: Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys. Res. Lett., 32 .L14405, doi:10.1029/2005GL022964.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K., , and Lettenmaier D. P. , 2003: Simulation of spatial varibility in snow and frozen soil. J. Geophys. Res., 108 .8858, doi:10.1029/2003JD003575.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., , and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Cosby, B. J., , Hornberger G. M. , , Clapp R. B. , , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , Betts R. A. , , Bunton C. B. , , Essery R. L. H. , , Rowntree P. R. , , and Smith J. , 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, D. A., 1963: Thermal properties of soils. Physics of the Plant Environment, W. R. van Wijk, Ed., North-Holland, 210–235.

  • Dunne, T., , and Black R. D. , 1971: Runoff processes during snowmelt. Water Resour. Res., 7 , 11601172.

  • Farouki, O. T., 1981: The thermal properties of soils in cold regions. Cold Regions Sci. Technol., 5 , 6775.

  • Fekete, B. M., , Vorosmarty C. J. , , and Grabs W. , cited. 2000: Global composite runoff fields based on observed discharge and simulated water balance. [Available online at http://www.grdc.sr.unh.edu/html/paper/ReportUS.pdf.].

  • Flerchinger, G. N., , and Saxton K. E. , 1989: Simultaneous heat and water model of a freezing snow–residue–soil system. I. Theory and development. Trans. ASAE, 32 , 565571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flury, M., , Flühler H. , , Jury W. A. , , and Leuenberger J. , 1994: Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res., 30 , 19451954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, D. J., , and Davy R. D. , 1988: Global snow depth climatology. Tech. Note USAFETAC/TN-88/006, Scott Air Force Base, IL, 48 pp.

  • Fuchs, M., , Campbell G. S. , , and Papendick R. I. , 1978: An analysis of sensible and latent heat flow in a partially frozen unsaturated soil. Soil Sci. Soc. Amer. J., 42 , 379385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansson, K., , Simunek J. , , Mizoguchi M. , , Lundin L-C. , , and van Genuchten M. T. , 2004: Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone J., 3 , 693704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D. L., , and Stein J. , 1983: Water movement into seasonally frozen soils. Water Resour. Res., 19 , 15471557.

  • Koren, V., 1980: Modeling of processes of river runoff formation in the forest zone of European USSR. Meteorology and Hydrology, No. 10, Allerton Press, 78–85.

    • Search Google Scholar
    • Export Citation
  • Koren, V., , Schaake J. , , Mitchell K. , , Duan Q-Y. , , Chen F. , , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 , D16. 1956919585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, G., , Bishop K. , , and Lofvenius M. O. , 2002: Soil frost and runoff at Svartberget, northern Sweden—Measurements and model analysis. Hydrol. Processes, 16 , 33793392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L. F., and Coauthors, 2003: Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia. J. Hydrometeor., 4 , 334351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, R. W., , Cramack E. C. , , Mclaughlin F. A. , , Falkner K. K. , , and Swift J. H. , 1999: Connections among ice, runoff and atmospheric forcing in Beaufort Sea. Geophys. Res. Lett., 26 , 22232226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., , and Yang Z-L. , 2004: The effects of canopy processes on snow surface energy and mass balances. J. Geophys. Res., 109 .D23111, doi:10.1029/2004JD004884.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., , Yang Z-L. , , Dickinson R. E. , , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization for use in GCMs. J. Geophys. Res., 110 .D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Nyberg, L., , Stahli M. , , Mellander P. E. , , and Bishop K. , 2001: Soil frost effects on soil water and runoff dynamics along a boreal forest transact: 1. Field investigations. Hydrol. Processes, 15 , 909926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). Tech. Note NCAR/TN-461+STR, 174 pp. [Available online at www.cgd.ucar.edu/tss/clm/distribution/clm3.0/index.html.].

  • Peterson, B. J., , Holmes R. M. , , McClelland J. W. , , Vorosmarty C. J. , , Lammers R. B. , , Shiklomanov A. I. , , Shiklomanov I. A. , , and Rahmstorf S. , 2002: Increasing river discharge to the Arctic Ocean. Science, 298 , 21712173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., , Slater A. G. , , Desborough C. E. , , and Zhao M. , 1999: Uncertainty in the simulation due to the parameterization of frozen soil moisture using the Global Soil Wetness Project methodology. J. Geophys. Res., 104 , D14. 1687916888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poutou, E., , Krinner G. , , Genthon C. , , and de Noblet-Ducoudre N. , 2004: Role of soil freezing in future boreal climate change. Climate Dyn., 23 , 621639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., , Vinnikov K. Y. , , Schlosser C. A. , , Speranskaya N. A. , , and Xue Y. , 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8 , 1535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004a: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rodell, M., , Femiglietti J. S. , , Chen J. L. , , Seneviratne S. I. , , Viterbo P. , , and Holl S. , 2004b: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31 .L20504, doi:10.1029/2004GL020873.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9 , 676705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. W., , and Wilson C. R. , 2005: Simulated estimation of hydrological loads from GRACE. J. Geod., 78 , 442456.

  • Shanley, J. B., , and Chalmers A. , 1999: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrol. Processes, 13 , 18431857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spaans, E. J. A., , and Baker J. M. , 1996: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic. Soil Sci. Soc. Amer. J., 60 , 1319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadler, D., , Wunderli H. , , Auckenthaler A. , , and Fluhler H. , 1996: Measurements of frost-induced snowmelt runoff in a forest soil. Hydrol. Processes, 10 , 12931304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadler, D., , Flühler H. , , and Jansson P-E. , 1997: Modelling vertical and lateral water flow in frozen and sloped forest soil plots. Cold Reg. Sci. Technol., 26 , 181194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadler, D., , Stähli M. , , Aeby P. , , and Flühler H. , 2000: Dye tracing and image analysis for quantifying water infiltration into frozen soils. Soil Sci. Soc. Amer. J., 64 , 505516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stähli, M., , Jansson P-E. , , and Lundin L-C. , 1999: Soil moisture redistribution and infiltration in frozen sandy soils. Water Resour. Res., 35 , 95103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahli, M., , Nyberg L. , , Mellander P-E. , , Jansson P-E. , , and Bishop K. H. , 2001: Soil frost effects on soil water and runoff dynamics along a boreal forest transact: 2. Simulations. Hydrol. Processes, 15 , 927941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stähli, M., , Bayard D. , , Wydler H. , , and Flühler H. , 2004: Snowmelt infiltration into alpine soils visualized by dye tracer technique. Arct. Antarct. Alp. Res., 36 , 128135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., , Rind D. , , Famiglietti J. , , and Rosenzweig C. , 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global modeling. J. Climate, 10 , 118137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F. G., , Adam J. C. , , Bowling L. C. , , and Lettenmaier D. P. , 2005: Streamflow simulations of the terrestrial Arctic domain. J. Geophys. Res., 110 .D08112, doi:10.1029/2004JD005518.

    • Search Google Scholar
    • Export Citation
  • Takata, K., 2002: Sensitivity of land surface processes to frozen soil permeability and surface water storage. Hydrol. Processes, 16 , 21552172.

  • Tapley, B. D., and Coauthors, 2004: GRACE measurements of mass variability in the earth system. Science, 305 , 503505.

  • Wahr, J., , Swenson S. , , Zlotnicki V. , , and Velicogna I. , 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31 .L11501, doi:10.1029/2004GL019779.

    • Search Google Scholar
    • Export Citation
  • Warrach, K., , Stieglitz M. , , Mengelkamp H. T. , , and Raschke E. , 2002: Advantages of a topographically controlled runoff simulation in a soil–vegetation–atmosphere transfer model. J. Hydrometeor., 3 , 131148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., , Sellers P. J. , , Kinter J. L. , , and Shukla J. , 1991: A simplied biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., , Zeng F. J. , , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties: A case study using HAPEX-mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., , Ye B. , , and Kane D. L. , 2004: Streamflow changes over Siberian Yenisei River basin. J. Hydrol., 296 , 5980.

  • Yang, Z-L., , and Dickinson R. E. , 1996: Description of the Biosphere–Atmosphere Transfer Scheme (BATS) for the soil moisture workshop and evaluation of its performance. Global Planet. Change, 13 , 117134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, B., , Yang D. , , and Kane D. L. , 2003: Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour. Res., 39 .1200, doi:10.1029/2003WR001991.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , Barry R. G. , , Knowles K. , , Heginbottom J. A. , , and Brown J. , 1999: Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Pol. Geogr., 23 , 2. 147169.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., , and Gray D. M. , 1997: A parametric expression for estimating infiltration into frozen soils. Hydrol. Processes, 11 , 17611775.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 342 80
PDF Downloads 261 261 73

Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale

View More View Less
  • 1 Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas
© Get Permissions
Restricted access

Abstract

The presence of ice in soil dramatically alters soil hydrologic and thermal properties. Despite this important role, many recent studies show that explicitly including the hydrologic effects of soil ice in land surface models degrades the simulation of runoff in cold regions. This paper addresses this dilemma by employing the Community Land Model version 2.0 (CLM2.0) developed at the National Center for Atmospheric Research (NCAR) and a simple TOPMODEL-based runoff scheme (SIMTOP). CLM2.0/SIMTOP explicitly computes soil ice content and its modifications to soil hydrologic and thermal properties. However, the frozen soil scheme has a tendency to produce a completely frozen soil (100% ice content) whenever the soil temperature is below 0°C. The frozen ground prevents infiltration of snowmelt or rainfall, thereby resulting in earlier- and higher-than-observed springtime runoff. This paper presents modifications to the above-mentioned frozen soil scheme that produce more accurate magnitude and seasonality of runoff and soil water storage. These modifications include 1) allowing liquid water to coexist with ice in the soil over a wide range of temperatures below 0°C by using the freezing-point depression equation, 2) computing the vertical water fluxes by introducing the concept of a fractional permeable area, which partitions the model grid into an impermeable part (no vertical water flow) and a permeable part, and 3) using the total soil moisture (liquid water and ice) to calculate the soil matric potential and hydraulic conductivity. The performance of CLM2.0/SIMTOP with these changes has been tested using observed data in cold-region river basins of various spatial scales. Compared to the CLM2.0/SIMTOP frozen soil scheme, the modified scheme produces monthly runoff that compares more favorably with that estimated by the University of New Hampshire–Global Runoff Data Center and a terrestrial water storage change that is in closer agreement with that measured by the Gravity Recovery and Climate Experiment (GRACE) satellites.

Corresponding author address: Dr. Guo-Yue Niu, Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78712. Email: niu@geo.utexas.edu

Abstract

The presence of ice in soil dramatically alters soil hydrologic and thermal properties. Despite this important role, many recent studies show that explicitly including the hydrologic effects of soil ice in land surface models degrades the simulation of runoff in cold regions. This paper addresses this dilemma by employing the Community Land Model version 2.0 (CLM2.0) developed at the National Center for Atmospheric Research (NCAR) and a simple TOPMODEL-based runoff scheme (SIMTOP). CLM2.0/SIMTOP explicitly computes soil ice content and its modifications to soil hydrologic and thermal properties. However, the frozen soil scheme has a tendency to produce a completely frozen soil (100% ice content) whenever the soil temperature is below 0°C. The frozen ground prevents infiltration of snowmelt or rainfall, thereby resulting in earlier- and higher-than-observed springtime runoff. This paper presents modifications to the above-mentioned frozen soil scheme that produce more accurate magnitude and seasonality of runoff and soil water storage. These modifications include 1) allowing liquid water to coexist with ice in the soil over a wide range of temperatures below 0°C by using the freezing-point depression equation, 2) computing the vertical water fluxes by introducing the concept of a fractional permeable area, which partitions the model grid into an impermeable part (no vertical water flow) and a permeable part, and 3) using the total soil moisture (liquid water and ice) to calculate the soil matric potential and hydraulic conductivity. The performance of CLM2.0/SIMTOP with these changes has been tested using observed data in cold-region river basins of various spatial scales. Compared to the CLM2.0/SIMTOP frozen soil scheme, the modified scheme produces monthly runoff that compares more favorably with that estimated by the University of New Hampshire–Global Runoff Data Center and a terrestrial water storage change that is in closer agreement with that measured by the Gravity Recovery and Climate Experiment (GRACE) satellites.

Corresponding author address: Dr. Guo-Yue Niu, Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78712. Email: niu@geo.utexas.edu

Save