• Allen, M. R., , and Stott P. A. , 2003: Estimating signal amplitudes in optimal fingerprinting. Part I: Theory. Climate Dyn., 21 , 477491.

  • Alley, W. M., 1984: The Palmer Drought Severity Index: Limitations and assumptions. J. Climate Appl. Meteor., 23 , 11001109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., , Nigam S. , , and Berbery E. H. , 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought and streamflow. J. Climate, 14 , 21052128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., , Meko D. M. , , Stahle D. W. , , and Cleaveland M. K. , 1999: Drought reconstructions for the continental United States. J. Climate, 12 , 11451162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., , Trenberth K. E. , , and Karl T. R. , 1998: Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett., 25 , 33673370.

  • Dai, A., , Trenberth K. E. , , and Qian T. , 2004: A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5 , 11171130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , Shukla J. , , Kinter J. , , and Rodwell M. , 2002: The Climate of the Twentieth Century Project. CLIVAR Exchanges, Vol. 7, No. 2, International CLIVAR Project Office, Southampton, United Kingdom, 37–39.

  • Gordon, C., , Cooper C. , , Senior C. A. , , Banks H. , , Gregory J. M. , , Johns T. C. , , Mitchell J. F. B. , , and Wood R. A. , 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , Mitchell J. F. B. , , and Brady A. J. , 1997: Summer drought in northern midlatitudes in a time-dependent CO2 climate experiment. J. Climate, 10 , 662686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., , Wallis J. R. , , and Hosking J. R. M. , 1992: Spatial comparability of the Palmer Drought Severity Index. Water Resour. Bull., 28 , 11111119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 11491165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International ad hoc Detection and Attribution Group (IDAG), 2005: Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18 , 12911314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2003: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dyn., 20 , 11671180.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , Hulme M. , , Briffa K. R. , , Jones C. G. , , Mitchell J. F. B. , , and Murphy J. M. , 1996: Summer moisture availability over Europe in the Hadley Centre general circulation model based on the Palmer Drought Severity Index. Int. J. Climatol., 16 , 155172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyantash, J., , and Dracup J. A. , 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83 , 11671180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., , and Saunders M. A. , 2002: A drought climatology for Europe. Int. J. Climatol., 22 , 15711592.

  • Lockwood, J. G., 1999: Is potential evapotranspiration and its relationship with actual evapotranspiration sensitive to elevated atmospheric CO2 levels? Climatic Change, 41 , 193212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., , Wetherald R. T. , , Milly P. C. D. , , Delworth T. L. , , and Stouffer R. J. , 2004: Century-scale change in water availability: CO2-quadrupling experiment. Climatic Change, 64 , 5976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Ntale, H. K., , and Gan T. Y. , 2003: Drought indices and their application to East Africa. Int. J. Climatol., 23 , 13351357.

  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 85 pp. [Available from NOAA Library and Information Services Division, 1315 East-West Highway, Silver Spring, MD 20910.].

  • Pope, V. D., , Gallani M. L. , , Rowntree P. R. , , and Stratton R. A. , 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16 , 123146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , Parker D. E. , , Horton E. B. , , Folland C. K. , , Alexander L. V. , , Rowell D. P. , , Kent E. C. , , and Kaplan A. , 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , Goldberg R. , , Hansen J. , , Rosenzweig C. , , and Ruedy R. , 1990: Potential evapotranspiration and the likelihood of future drought. J. Geophys. Res., 95 , 998310004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Nino–Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbar, A., , and Skinner W. , 2004: Summer drought patterns in Canada and the relationship to global sea surface temperatures. J. Climate, 17 , 28662880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 4.1–4.53.

  • Svoboda, M., and Coauthors, 2002: The drought monitor. Bull. Amer. Meteor. Soc., 83 , 11811190.

  • Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107 .4306, doi:10.1029/2000JD000028.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Walraven, R., 1984: Digital filters. Proc. Digital Equipment User’s Society, Davis, CA, Department of Applied Science, University of California, 23–30.

  • Webb, R. W., , Rosenzweig C. E. , , and Levine E. R. , 1993: Specifying land surface characteristics in general circulation models—Soil profile data set and derived water-holding capacities. Global Biogeochem. Cycles, 7 , 97108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, R. W., , Rosenzweig C. E. , , and Levine E. R. , 2000: Global soil texture and derived water-holding capacities (Webb et al.) data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN.

  • Wetherald, R. T., , and Manabe S. , 2002: Simulation of hydrologic changes associated with global warming. J. Geophys. Res., 107 .4379, doi:10.1029/2001JD001195.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Drought: A Global Assessment, D. A. Wilhite, Ed., Routledge, 3–18.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., , and Glantz M. H. , 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10 , 111120.

  • World Meteorological Organization, 1975: Drought and agriculture. WMO Tech. Note 138, Report of the CAgM Working Group on the Assessment of Drought, Geneva, Switzerland, 127 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 341 74
PDF Downloads 230 230 54

Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model

View More View Less
  • 1 Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the land surface, the model captures the observed relationship between the El Niño–Southern Oscillation and regions of relative wetness and dryness represented by high and low values of the PDSI respectively. At decadal time scales, on a global basis, the model reproduces the observed drying trend (decreasing PDSI) since 1952. An optimal detection analysis shows that there is a significant influence of anthropogenic emissions of greenhouse gasses and sulphate aerosols in the production of this drying trend. On a regional basis, the specific regions of wetting and drying are not always accurately simulated. In this paper, present-day drought events are defined as continuous time periods where the PDSI is less than the 20th percentile of the PDSI distribution between 1952 and 1998 (i.e., on average 20% of the land surface is in drought at any one time). Overall, the model predicts slightly less frequent but longer events than are observed. Future projections of drought in the twenty-first century made using the Special Report on Emissions Scenarios (SRES) A2 emission scenario show regions of strong wetting and drying with a net overall global drying trend. For example, the proportion of the land surface in extreme drought is predicted to increase from 1% for the present day to 30% by the end of the twenty-first century.

Corresponding author address: Dr. Eleanor Burke, Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, Exeter, EX1 3PB, United Kingdom. Email: eleanor.burke@metoffice.gov.uk

Abstract

Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the land surface, the model captures the observed relationship between the El Niño–Southern Oscillation and regions of relative wetness and dryness represented by high and low values of the PDSI respectively. At decadal time scales, on a global basis, the model reproduces the observed drying trend (decreasing PDSI) since 1952. An optimal detection analysis shows that there is a significant influence of anthropogenic emissions of greenhouse gasses and sulphate aerosols in the production of this drying trend. On a regional basis, the specific regions of wetting and drying are not always accurately simulated. In this paper, present-day drought events are defined as continuous time periods where the PDSI is less than the 20th percentile of the PDSI distribution between 1952 and 1998 (i.e., on average 20% of the land surface is in drought at any one time). Overall, the model predicts slightly less frequent but longer events than are observed. Future projections of drought in the twenty-first century made using the Special Report on Emissions Scenarios (SRES) A2 emission scenario show regions of strong wetting and drying with a net overall global drying trend. For example, the proportion of the land surface in extreme drought is predicted to increase from 1% for the present day to 30% by the end of the twenty-first century.

Corresponding author address: Dr. Eleanor Burke, Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, Exeter, EX1 3PB, United Kingdom. Email: eleanor.burke@metoffice.gov.uk

Save