A Distributed Snow-Evolution Modeling System (SnowModel)

Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
and
Kelly Elder Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado

Search for other papers by Kelly Elder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. Since each of these submodels was originally developed and tested for nonforested conditions, details describing modifications made to the submodels for forested areas are provided. SnowModel was created to run on grid increments of 1 to 200 m and temporal increments of 10 min to 1 day. It can also be applied using much larger grid increments, if the inherent loss in high-resolution (subgrid) information is acceptable. Simulated processes include snow accumulation; blowing-snow redistribution and sublimation; forest canopy interception, unloading, and sublimation; snow-density evolution; and snowpack melt. Conceptually, SnowModel includes the first-order physics required to simulate snow evolution within each of the global snow classes (i.e., ice, tundra, taiga, alpine/mountain, prairie, maritime, and ephemeral). The required model inputs are 1) temporally varying fields of precipitation, wind speed and direction, air temperature, and relative humidity obtained from meteorological stations and/or an atmospheric model located within or near the simulation domain; and 2) spatially distributed fields of topography and vegetation type. SnowModel’s ability to simulate seasonal snow evolution was compared against observations in both forested and nonforested landscapes. The model closely reproduced observed snow-water-equivalent distribution, time evolution, and interannual variability patterns.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: liston@cira.colostate.edu

Abstract

SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. Since each of these submodels was originally developed and tested for nonforested conditions, details describing modifications made to the submodels for forested areas are provided. SnowModel was created to run on grid increments of 1 to 200 m and temporal increments of 10 min to 1 day. It can also be applied using much larger grid increments, if the inherent loss in high-resolution (subgrid) information is acceptable. Simulated processes include snow accumulation; blowing-snow redistribution and sublimation; forest canopy interception, unloading, and sublimation; snow-density evolution; and snowpack melt. Conceptually, SnowModel includes the first-order physics required to simulate snow evolution within each of the global snow classes (i.e., ice, tundra, taiga, alpine/mountain, prairie, maritime, and ephemeral). The required model inputs are 1) temporally varying fields of precipitation, wind speed and direction, air temperature, and relative humidity obtained from meteorological stations and/or an atmospheric model located within or near the simulation domain; and 2) spatially distributed fields of topography and vegetation type. SnowModel’s ability to simulate seasonal snow evolution was compared against observations in both forested and nonforested landscapes. The model closely reproduced observed snow-water-equivalent distribution, time evolution, and interannual variability patterns.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: liston@cira.colostate.edu

Save
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS-19, 150 pp.

  • Balk, B., and Elder K. , 2000: Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resour. Res., 36 , 1326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK, 60 pp.

  • Bartelt, P., and Lehning M. , 2002: A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model. Cold Reg. Sci. Technol., 35 , 123145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13 , 21492175.

  • Blöschl, G., and Kirnbauer R. , 1992: An analysis of snow cover patterns in a small Alpine catchment. Hydrol. Processes, 6 , 99109.

  • Bonan, G. B., 1991: A biophysical surface energy budget analysis of soil temperature in the boreal forests of interior Alaska. Water Resour. Res., 27 , 767781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruland, O., Liston G. E. , Vonk J. , and Killingtveit A. , 2004: Modelling the snow distribution at two High-Arctic sites at Svalbard, Norway, and at a Sub-Arctic site in Central Norway. Nordic Hydrol., 35 , 191208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20 , 15271532.

  • Chen, J. M., Rich P. M. , Gower S. T. , Norman J. M. , and Plummer S. , 1997: Leaf area index of boreal forests: Theory, techniques, and measurements. J. Geophys. Res., 102 , 2942929443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cionco, R. M., 1978: Analysis of canopy index values for various canopy densities. Bound.-Layer Meteor., 15 , 8193.

  • Cohen, J., and Entekhabi D. , 2001: The influence of snow cover on Northern Hemisphere climate variability. Atmos.–Ocean, 39 , 3553.

  • Dodson, R., and Marks D. , 1997: Daily air temperature interpolation at high spatial resolution over a large mountainous region. Climate Res., 8 , 120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elder, K., Dozier J. , and Michaelsen J. , 1991: Snow accumulation and distribution in an alpine watershed. Water Resour. Res., 27 , 15411552.

  • Ellis, A. W., and Leathers D. J. , 1999: Analysis of cold airmass temperature modification across the U.S. Great Plains as a consequence of snow depth and albedo. J. Appl. Meteor., 38 , 696711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Pomeroy J. , 2004: Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an arctic tundra basin. J. Hydrometeor., 5 , 735744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., Pomeroy J. , Parviainen J. , and Storck P. , 2003: Sublimation of snow from coniferous forests in a climate model. J. Climate, 16 , 18551864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., and Businger J. A. , 1980: An Introduction to Atmospheric Physics. Academic Press, 432 pp.

  • Greene, E. M., Liston G. E. , and Pielke R. A. Sr., 1999: Simulation of above treeline snowdrift formation using a numerical snow-transport model. Cold Reg. Sci. Technol., 30 , 135144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, Karl T. R. , and Knight T. W. , 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263 , 198200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J., Melloh R. , Koenig G. , Pomeroy J. , Rowlands A. , Cline D. , Elder K. , and Davis R. , 2004a: Sub-canopy energetics at the CLPX Local Scale Observation Site (LSOS). National Snow and Ice Data Center, digital media.

  • Hardy, J., Melloh R. , Koenig G. , Marks D. , Winstral A. , Pomeroy J. W. , and Link T. , 2004b: Solar radiation transmission through conifer canopies. Agric. For. Meteor., 126 , 257270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasholt, B., Liston G. E. , and Knudsen N. T. , 2003: Snow distribution modelling in the Ammassalik Region, South East Greenland. Nordic Hydrol., 34 , 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedstrom, N. R., and Pomeroy J. W. , 1998: Measurements and modeling of snow interception in the boreal forest. Hydrol. Processes, 12 , 16111625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellström, , 2000: Forest cover algorithms for estimating meteorological forcing in a numerical snow model. Hydrol. Processes, 14 , 32393256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , and Reiners W. A. , 2002: Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming, USA. Arc. Antarc. Alp. Res., 34 , 262273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., Kane D. L. , Benson C. S. , and Everett K. R. , 1996: Energy balance and hydrological processes in an Arctic watershed. Landscape Function: Implications for Ecosystem Response to Disturbance: A Case Study in Arctic Tundra, J. F. Reynolds and J. D. Tenhunen, Eds., Ecologic Studies Series, Vol. 120, Springer-Verlag, 131–154.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., Goering D. J. , and Kane D. L. , 1998: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J. Geophys. Res., 103 , D22. 2897528991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iziomon, M. G., Mayer H. , and Matzarakis A. , 2003: Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J. Atmos. Sol.-Terr. Phys., 65 , 11071116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H. G., 1999: The ecology of snow-covered systems: A brief overview of nutrient cycling and life in the cold. Hydrol. Processes, 13 , 21352147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D. L., Hinzman L. D. , Benson C. S. , and Liston G. E. , 1991: Snow hydrology of a headwater Arctic basin. 1. Physical measurements and process studies. Water Resour. Res., 27 , 10991109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., DesJardins M. , and Kocin P. J. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 1989: Simple procedures for extrapolation of humidity variables in the mountainous western United States. J. Climate, 2 , 656669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L. W., 1975: Sublimation of snow in a turbulent atmosphere. Ph.D. dissertation, University of Wyoming, 162 pp.

  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34 , 17051715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Hall D. K. , 1995: An energy balance model of lake ice evolution. J. Glaciol., 41 , 373382.

  • Liston, G. E., and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44 , 498516.

  • Liston, G. E., and Pielke R. A. Sr., 2001: A climate version of the regional atmospheric modeling system. Theor. Appl. Climatol., 68 , 155173.

  • Liston, G. E., and Sturm M. , 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3 , 646659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Winther J-G. , 2005: Antarctic surface and subsurface snow and ice melt fluxes. J. Climate, 18 , 14691481.

  • Liston, G. E., and Elder K. , 2006: A meteorological distribution system for high resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7 , 217234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Pielke R. A. Sr., and Greene E. M. , 1999a: Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res., 104 , D16. 1955919567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Winther J-G. , Bruland O. , Elvehøy H. , and Sand K. , 1999b: Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45 , 273285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Winther J-G. , Bruland O. , Elvehøy H. , Sand K. , and Karlöf L. , 2000: Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarct. Sci., 12 , 6979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., McFadden J. P. , Sturm M. , and Pielke R. A. Sr., 2002: Modeled changes in arctic tundra snow, energy, and moisture fluxes due to increased shrubs. Global Change Biol., 8 , 1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., Tarboton D. G. , and Cooley K. R. , 1998: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Processes, 12 , 16711683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., Tarboton D. G. , and Cooley K. R. , 1999: Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model. Hydrol. Processes, 13 , 19211933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., Domingo J. , Susong D. , Link T. , and Garen D. , 1999: A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Processes, 13 , 19351959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P., 1999: Snowcover formation and melt: Recent advances and future prospects. Hydrol. Processes, 13 , 21172134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFadden, J. P., Liston G. E. , Sturm M. , Pielke R. A. Sr., and Chapin F. S. III, 2001: Interactions of shrubs and snow in arctic tundra: Measurements and models. Soil, Vegetation, Atmosphere Transfer Schemes and Large-Scale Hydrological Models, A. J. Dolman et al., Eds., IAHS Publ. 270, 317–325.

    • Search Google Scholar
    • Export Citation
  • McNamara, J. P., Kane D. L. , and Hinzman L. D. , 1997: Hydrograph separations in an Arctic watershed using mixing model and graphical techniques. Water Resour. Res., 33 , 17071719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNamara, J. P., Kane D. L. , and Hinzman L. D. , 1999: An analysis an arctic channel network using a digital elevation model. Geomorphology, 29 , 339353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Liston G. E. , Hasholt B. , and Knudsen N. T. , 2006: Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J. Hydrometeor., 7 , 808824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montesi, J., Elder K. , Schmidt R. A. , and Davis R. E. , 2004: Sublimation of intercepted snow within a subalpine forest canopy at two elevations. J. Hydrometeor., 5 , 763773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, F. E., Hinkel K. M. , Shiklomanov N. I. , Mueller G. R. , Miller L. L. , and Walker D. K. , 1998: Active-layer thickness in north central Alaska: Systematic sampling, scale, and spatial autocorrelation. J. Geophys. Res., 103 , D22. 2896328973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and Schmidt R. A. , 1993: The use of fractal geometry in modeling intercepted snow accumulation and sublimation. Proc. 50th Eastern Snow Conf., Quebec City, QC, Canada, Eastern Snow Conference, 1–10.

  • Pomeroy, J. W., Gray D. M. , Shook K. R. , Toth B. , Essery R. L. H. , Pietroniro A. , and Hedstrom N. , 1998a: An evaluation of snow accumulation and ablation processes for land surface modeling. Hydrol. Processes, 12 , 23392367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Parviainen J. , Hedstrom N. , and Gray D. M. , 1998b: Coupled modeling of forest snow interception and sublimation. Hydrol. Processes, 12 , 23172337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Gray D. M. , Hedstrom N. R. , and Janowics J. R. , 2002: Prediction of seasonal snow accumulation in cold climate forests. Hydrol. Processes, 16 , 35433558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, R., Tarboton D. G. , Liston G. E. , Luce C. H. , and Seyfried M. S. , 2001: Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek, Idaho, USA. Water Resour. Res, 37 , 13411357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B. C., 1977: A mathematical model for diagnosis and prediction of surface winds in mountainous terrain. J. Appl. Meteor., 16 , 571584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R. A., 1972: Sublimation of wind-transported snow—A model. Research Paper RM-90, Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Fort Collins, CO, 24 pp.

  • Sicart, J. E., Pomeroy J. W. , Essery R. L. H. , Hardy J. , Link T. , and Marks D. , 2004: A sensitivity study of daytime net radiation during snowmelt to forest canopy and atmospheric conditions. J. Hydrometeor., 5 , 774784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2 , 725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strack, J. E., Pielke R. A. Sr., and Adegoke J. , 2003: Sensitivity of model-generated daytime surface heat fluxes over snow to land-cover changes. J. Hydrometeor., 4 , 2442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., 1992: Snow distribution and heat flow in the taiga. Arc. Alp. Res, 24 , 145152.

  • Sturm, M., Holmgren J. , and Liston G. E. , 1995: A seasonal snow cover classification system for local to global applications. J. Climate, 8 , 12611283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., McFadden J. P. , Liston G. E. , Chapin F. S. III, Racine C. H. , and Holmgren J. , 2001: Snow–shrub interactions in arctic tundra: A hypothesis with climatic implications. J. Climate, 14 , 336344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., Douglas T. , Racine C. , and Liston G. E. , 2005a: Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res., 110 .G01004, doi:10.1029/2005JG000013.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., Schimel J. , Michelson G. , Welker J. , Oberbauer S. F. , Liston G. E. , Fahnestock J. , and Romanovsky V. E. , 2005b: Winter biological processes could help convert arctic tundra to shrubland. Bioscience, 55 , 1726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taras, B., Sturm M. , and Liston G. E. , 2002: Snow–ground interface temperatures in the Kuparuk River Basin, arctic Alaska: Measurements and model. J. Hydrometeor., 3 , 377394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., Chowdhury T. G. , and Jackson T. H. , 1995: A spatially distributed energy balance snowmelt model. Biogeochemistry of Seasonally Snow-Covered Catchments, K. A. Tonnessen, M. W. Williams, and M. Tranter, Eds., IAHS Publ. 228, 141–155.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Running S. W. , and White M. A. , 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190 , 214251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. D., and Mason B. J. , 1966: The evaporation of ice spheres and ice crystals. Brit. J. Appl. Phys., 17 , 541548.

  • Troendle, C. A., and Reuss J. O. , 1997: Effect of clear cutting on snow accumulation and water outflow at Fraser, Colorado. Hydrol. Earth Syst. Sci., 1 , 325332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C., Slayback D. , Pinzon J. , Los S. , Myneni R. , and Taylor M. , 2001: Higher northern latitude NDVI and growing season trends from 1982 to 1999. Int. J. Biometeor., 45 , 184190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, K. L., 1992: Evaluation of trends in runoff in the western United States. Managing Water Resources during Global Change, R. Herrmann, Ed., American Water Resources Association, 701–710.

    • Search Google Scholar
    • Export Citation
  • Walcek, C. J., 1994: Cloud cover and its relationship to relative humidity during a spring midlatitude cyclone. Mon. Wea. Rev., 122 , 10211035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Hobbs P. V. , 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Winstral, A., and Marks D. , 2002: Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Processes, 16 , 35853603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., Elder K. , and Davis R. E. , 2002: Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hydrometeor., 3 , 524538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., Armstrong R. L. , and Smith J. , 2003: Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. J. Geophys. Res., 108 .D22. 8860, doi:10.1029/2003JD003530.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3297 1081 97
PDF Downloads 2377 773 62