Comparison of the Scaling Characteristics of Rainfall Derived from Space-Based and Ground-Based Radar Observations

Mekonnen Gebremichael IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Mekonnen Gebremichael in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Over Department of Geology and Geography, Eastern Illinois University, Charleston, Illinois

Search for other papers by Thomas M. Over in
Current site
Google Scholar
PubMed
Close
, and
Witold F. Krajewski IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Witold F. Krajewski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In view of the importance of tropical rainfall and the ubiquitous need for its estimates in climate modeling, the authors assess the ability of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to characterize the scaling characteristics of rainfall by comparing the derived results with those obtained from the ground-based radar (GR) data. The analysis is based on 59 months of PR and GR rain rates at three TRMM ground validation (GV) sites: Houston, Texas; Melbourne, Florida; and Kwajalein Atoll, Republic of the Marshall Islands. The authors consider spatial scales ranging from about 4 to 64 km at a fixed temporal scale corresponding to the sensor “instantaneous” snapshots (∼15 min). The focus is on the scaling of the marginal moments, which allows estimation of the scaling parameters from a single scene of data. The standard rainfall products of the PR and the GR are compared in terms of distributions of the scaling parameter estimates, the connection between the scaling parameters and the large-scale spatial average rain rate, and deviations from scale invariance. The five main results are as follows: 1) the PR yields values of the rain intermittence scaling parameter within 20% of the GR estimate; 2) both the PR and GR data show a one-to-one relationship between the intermittence scaling parameter and the large-scale spatial average rain rate that can be fit with the same functional form; 3) the PR underestimates the curvature of the scaling function from 20% to 50%, implying that high rain-rate extremes would be missed in a downscaling procedure; 4) the majority of the scenes (>85%) from both the PR and GR are scale invariant at the moment orders q = 0 and 2; and 5) the scale-invariance property tends to break down more likely over ocean than over land; the rainfall regimes that are not scale invariant are dominated by light storms covering large areas. Our results further show that for a sampling size of one year of data, the TRMM temporal sampling does not significantly affect the derived scaling characteristics. The authors conclude that the TRMM PR has the ability to characterize the basic scaling properties of rainfall, though the resulting parameters are subject to some degree of uncertainty.

Corresponding author address: Dr. Witold F. Krajewski, IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242. Email: witold-krajewski@uiowa.edu

Abstract

In view of the importance of tropical rainfall and the ubiquitous need for its estimates in climate modeling, the authors assess the ability of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to characterize the scaling characteristics of rainfall by comparing the derived results with those obtained from the ground-based radar (GR) data. The analysis is based on 59 months of PR and GR rain rates at three TRMM ground validation (GV) sites: Houston, Texas; Melbourne, Florida; and Kwajalein Atoll, Republic of the Marshall Islands. The authors consider spatial scales ranging from about 4 to 64 km at a fixed temporal scale corresponding to the sensor “instantaneous” snapshots (∼15 min). The focus is on the scaling of the marginal moments, which allows estimation of the scaling parameters from a single scene of data. The standard rainfall products of the PR and the GR are compared in terms of distributions of the scaling parameter estimates, the connection between the scaling parameters and the large-scale spatial average rain rate, and deviations from scale invariance. The five main results are as follows: 1) the PR yields values of the rain intermittence scaling parameter within 20% of the GR estimate; 2) both the PR and GR data show a one-to-one relationship between the intermittence scaling parameter and the large-scale spatial average rain rate that can be fit with the same functional form; 3) the PR underestimates the curvature of the scaling function from 20% to 50%, implying that high rain-rate extremes would be missed in a downscaling procedure; 4) the majority of the scenes (>85%) from both the PR and GR are scale invariant at the moment orders q = 0 and 2; and 5) the scale-invariance property tends to break down more likely over ocean than over land; the rainfall regimes that are not scale invariant are dominated by light storms covering large areas. Our results further show that for a sampling size of one year of data, the TRMM temporal sampling does not significantly affect the derived scaling characteristics. The authors conclude that the TRMM PR has the ability to characterize the basic scaling properties of rainfall, though the resulting parameters are subject to some degree of uncertainty.

Corresponding author address: Dr. Witold F. Krajewski, IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242. Email: witold-krajewski@uiowa.edu

Save
  • Adler, R. F., Huffman G. J. , Bolvin D. T. , Curtis S. , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39 , 20072023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deidda, R., 2000: Rainfall downscaling in a space–time multifractal framework. Water Resour. Res., 36 , 17791794.

  • Doneaud, A. A., Smith P. L. , Dennis A. S. , and Sengupta S. , 1981: A simple method for estimating convective rain volume over an area. Water Resour. Res., 17 , 16761682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doneaud, A. A., Niscov S. I. , Priegnitz D. L. , and Smith P. L. , 1984: The area–time integral as an indicator for convective rain volumes. J. Climate Appl. Meteor., 23 , 555561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, N. R., and Smith H. , 1998: Applied Regression Analysis. John Wiley & Sons, 706 pp.

  • Goldhirsh, J., and Musiani B. , 1986: Rain cell size characteristics derived from radar observations at Wallops Island, Virginia. IEEE Trans. Geosci. Remote Sens., GE-24 , 947954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and Waymire E. C. , 1990: Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res., 95 , D3. 19992009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and Waymire E. C. , 1993: A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteor., 32 , 251267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., Castro S. L. , and Over T. M. , 1996: On scaling exponents of spatial peak flows from rainfall and river network geometry. J. Hydrol., 187 , 81104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D., Foufoula-Georgiou E. , and Kummerow C. , 2003: Effects of underrepresented hydrometeor variability and partial beam filling on microwave brightness temperatures for rainfall retrieval. J. Geophys. Res., 108 .8380, doi:10.1029/2001JD001144.

    • Search Google Scholar
    • Export Citation
  • Hentschel, H. G. R., and Procaccia I. , 1983: The infinite number of generalizations dimensions of fractals and strange attractors. Physica D, 8 , 435444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., and Bordan J. , 1954: Errors inherent in the radar wavelength measurement of rainfall at attenuating wavelengths. J. Meteor., 11 , 5867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holley, R., and Waymire E. C. , 1992: Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Probab., 2 , 819845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jothityangkoon, C., Sivapalan M. , and Viney N. R. , 2000: Tests of a space–time model of daily rainfall in southwestern Australia based on nonhomogeneous random cascades. Water Resour. Res., 36 , 267284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kedem, B., Chiu L. S. , and Karni Z. , 1990: An analysis of the threshold method for measuring area-average rainfall. J. Appl. Meteor., 29 , 320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Iguchi T. , 1999: Nonuniform beamfilling correction for spaceborne radar rainfall measurement: Implication from TOGA COARE radar data analysis. J. Atmos. Oceanic Technol., 16 , 17221735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Morrissey M. L. , Smith J. A. , and Rexroth D. T. , 1992: The accuracy of the area-threshold method: A model-based simulation study. J. Appl. Meteor., 31 , 13961406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and Mandelbrot B. , 1985: Fractal properties of rain and a fractal model. Tellus, 37A , 209232.

  • Lovejoy, S., and Schertzer D. , 1985: Generalised scale invariance and fractal models of rain. Water Resour. Res., 21 , 12331250.

  • Lovejoy, S., and Schertzer D. , 1990: Multifractals, universality classes, and satellite and radar measurements of cloud and rain fields. J. Geophys. Res., 95 , 20212031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D. A., and Coauthors, 2000: Climatological processing and product development for the TRMM ground validation program. Phys. Chem. Earth., 25B , 871875.

    • Search Google Scholar
    • Export Citation
  • Menabde, M., 1998: Bounded lognormal cascades as quasi-multiaffine random processes. Nonlinear Processes Geophys, 5 , 6368.

  • Menabde, M., and Sivapalan M. , 2001: Linking space–time variability of river runoff and rainfall fields: A dynamic approach. Adv. Water Resour., 24 , 10011014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menabde, M., Seed A. , Harris D. , and Austin G. , 1997: Self-similar random fields and rainfall simulation. J. Geophys. Res., 102 , D12. 1350913515.

  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nykanen, D. K., Foufoula-Georgiou E. , and Lapenta W. M. , 2001: Impact of small-scale rainfall variability on larger-scale spatial organization of land–atmosphere fluxes. J. Hydrometeor., 2 , 105121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., and Julien P. Y. , 1993: Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scale. Water Resour. Res., 29 , 25892597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., and Julien P. Y. , 1994: Runoff model sensitivity to radar rainfall resolution. J. Hydrol., 158 , 118.

  • Over, T. M., 1995: Modeling space–time rainfall at the mesoscale using random cascades. Ph.D. thesis, University of Colorado, 249 pp.

  • Over, T. M., and Gupta V. K. , 1994: Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing. J. Appl. Meteor., 33 , 15261542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Over, T. M., and Gupta V. K. , 1996: A space–time theory of mesoscale rainfall using random cascades. J. Geophys. Res., 101 , D21. 2631926331.

  • Perica, S., and Foufoula-Georgiou E. , 1996: Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems. J. Geophys. Res., 101 , 74317448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Wolff D. B. , and Amitai E. , 1994: The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 33 , 682693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., Kummerow C. , Tao W. K. , and Adler R. F. , 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

  • Tessier, Y., Lovejoy S. , and Schertzer D. , 1993: Universal multifractals: Theory and observations for rain and clouds. J. Appl. Meteor., 32 , 223250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troutman, B. M., and Vecchia A. V. , 1999: Estimation of Renyi exponents in random cascades. Bernoulli, 5 , 191207.

  • Winchell, M., Gupta H. V. , and Sorooshian S. , 1998: On the simulation of infiltration- and saturation-excesses runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation. Water Resour. Res., 34 , 26552670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., Marks D. A. , Amitai E. , Silberstein D. S. , Fisher B. L. , Tokay A. , Wang J. , and Pippitt J. L. , 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22 , 365380.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 48 4
PDF Downloads 66 24 3