Water Vapor Transport and the Production of Precipitation in the Eastern Fertile Crescent

J. P. Evans Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by J. P. Evans in
Current site
Google Scholar
PubMed
Close
and
R. B. Smith Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by R. B. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The study presented here attempts to quantify the significance of southerly water vapor fluxes on precipitation occurring in the eastern Fertile Crescent region. The water vapor fluxes were investigated at high temporal and spatial resolution by using a Regional Climate Model [fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)–Noah land surface model] to downscale the NCEP–NCAR reanalysis. Using the Iterative Self-Organizing Data Analysis Techniques (ISODATA) clustering algorithm, the 200 largest precipitation events, occurring from 1990 through 1994, were grouped into classes based on the similarity of their water vapor fluxes. Results indicate that, while southerly fluxes were dominant in 24% of tested events, these events produced 43% of the total precipitation produced by the 200 largest events. Thus, while the majority of precipitation events occurring in the Fertile Crescent involve significant water vapor advected from the west, those events that included southerly fluxes produced much larger precipitation totals. This suggests that changes that affect these southerly fluxes more than the westerly fluxes (e.g., changes in the Indian monsoon, movement of the head of the Persian Gulf, etc.) may have a relatively strong affect on the total precipitation falling in the Fertile Crescent even though they affect relatively few precipitation events. To obtain a clearer view of the precipitation mechanisms, the authors used a linear model, along with the estimated water vapor fluxes, to downscale from 25 to 1 km. The result shows a spectrum of mountain scales not seen in the regional model, exerting tight control on the precipitation pattern.

Corresponding author address: Jason Evans, Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. Email: jason.evans@yale.edu

Abstract

The study presented here attempts to quantify the significance of southerly water vapor fluxes on precipitation occurring in the eastern Fertile Crescent region. The water vapor fluxes were investigated at high temporal and spatial resolution by using a Regional Climate Model [fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)–Noah land surface model] to downscale the NCEP–NCAR reanalysis. Using the Iterative Self-Organizing Data Analysis Techniques (ISODATA) clustering algorithm, the 200 largest precipitation events, occurring from 1990 through 1994, were grouped into classes based on the similarity of their water vapor fluxes. Results indicate that, while southerly fluxes were dominant in 24% of tested events, these events produced 43% of the total precipitation produced by the 200 largest events. Thus, while the majority of precipitation events occurring in the Fertile Crescent involve significant water vapor advected from the west, those events that included southerly fluxes produced much larger precipitation totals. This suggests that changes that affect these southerly fluxes more than the westerly fluxes (e.g., changes in the Indian monsoon, movement of the head of the Persian Gulf, etc.) may have a relatively strong affect on the total precipitation falling in the Fertile Crescent even though they affect relatively few precipitation events. To obtain a clearer view of the precipitation mechanisms, the authors used a linear model, along with the estimated water vapor fluxes, to downscale from 25 to 1 km. The result shows a spectrum of mountain scales not seen in the regional model, exerting tight control on the precipitation pattern.

Corresponding author address: Jason Evans, Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. Email: jason.evans@yale.edu

Save
  • Aqrawi, A. A. M., 2001: Stratigraphic signatures of climatic change during the Holocene evolution of the Tigris–Euphrates Delta, lower Mesopotamia. Global Planet. Change, 28 , 267283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, G. H., and Hall D. J. , 1967: A clustering technique for summarizing multivariate data. Behav. Sci., 12 , 153165.

  • Barstad, I., and Smith R. B. , 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6 , 8599.

  • Braconnot, P., Joussaume S. , de Noblet N. , and Ramstein G. , 2000: Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project. Global Planet. Change, 26 , 5166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Mitchell K. , 1999: Using GEWEX/ISLSCP forcing data to simulate global soil moisture fields and hydrological cycle for 1987–1988. J. Meteor. Soc. Japan, 77 , 167182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, M. T., and Bonan G. B. , 1997: Feedbacks between climate and surface water in northern Africa during the middle Holocene. J. Geophys. Res., 102 , 1108711101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, L. B., 1992: Evidence of ascent in a sloped barrier jet and an associated heavy-snow band. Mon. Wea. Rev., 120 , 914924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., Smith R. B. , and Oglesby R. J. , 2004: Middle East climate simulation and dominant precipitation processes. Int. J. Climatol., 24 , 16711694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., Oglesby R. J. , and Lapenta W. M. , 2005: Time series analysis of regional climate model performance. J. Geophys. Res., 110 .D04104, doi:10.1029/2004JD005046.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note, 117 pp.

  • Hong, S. Y., and Pan H. L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquemin, B., and Noilhan J. , 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52 , 93134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J., Bonan G. , Foley J. , and Harrison S. P. , 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384 , 623626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeck, K., 1996: Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet. Sci. Lett., 142 , 4357.

  • Liu, Z., Otto-Bliesner B. , Kutzbach J. , Li L. , and Shields C. , 2003: Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Climate, 16 , 24722490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Ek M. , 1984: Influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23 , 222234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Pan H. L. , 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 19 , 120.

  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21 , 925930.

  • Pournelle, J. R., 2003: Marshland of cities: Deltaic landscapes and the evolution of early Mesopotamian civilization. Ph.D. thesis, University of California, San Diego, 314 pp.

  • Randel, D. L., VonderHaar T. H. , Ringerud M. A. , Stephens G. L. , Greenwald T. J. , and Combs C. L. , 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77 , 12331246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., Rasmussen R. J. , and Bruintjes R. T. , 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q. Y. , Mitchell K. , and Chen F. , 1996: A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101 , 74617475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61 , 13771391.

  • Smith, R. B., Barstad I. , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62 , 177191.

  • Vettoretti, G., Peltier W. R. , and McFarlane N. A. , 1998: Simulations of Mid-Holocene climate using an atmospheric general circulation model. J. Climate, 11 , 26072627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyhenmeyer, C. E., Burns S. J. , Waber H. N. , Aeschbach-Hertig W. , Kipfer R. , Loosli H. H. , and Matter A. , 2000: Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science, 287 , 842845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, T., Shimada J. , and Miyaoka K. , 2002: Footprint analysis using event-based isotope data for identifying source area of precipitated water. J. Geophys. Res., 107 .4624, doi:10.1029/2001JD001187.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Evans J. , and Smith R. B. , 2005: MODIS-derived boundary conditions for a mesoscale climate model: Application to irrigated agriculture in the Euphrates basin. Mon. Wea. Rev., 133 , 17271743.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 309 140 4
PDF Downloads 170 59 0