Assimilation of Disaggregated Microwave Soil Moisture into a Hydrologic Model Using Coarse-Scale Meteorological Data

O. Merlin Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by O. Merlin in
Current site
Google Scholar
PubMed
Close
,
A. Chehbouni Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by A. Chehbouni in
Current site
Google Scholar
PubMed
Close
,
G. Boulet Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by G. Boulet in
Current site
Google Scholar
PubMed
Close
, and
Y. Kerr Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Y. Kerr in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Near-surface soil moisture retrieved from Soil Moisture and Ocean Salinity (SMOS)-type data is downscaled and assimilated into a distributed soil–vegetation–atmosphere transfer (SVAT) model with the ensemble Kalman filter. Because satellite-based meteorological data (notably rainfall) are not currently available at finescale, coarse-scale data are used as forcing in both the disaggregation and the assimilation. Synthetic coarse-scale observations are generated from the Monsoon ‘90 data by aggregating the Push Broom Microwave Radiometer (PBMR) pixels covering the eight meteorological and flux (METFLUX) stations and by averaging the meteorological measurements. The performance of the disaggregation/assimilation coupling scheme is then assessed in terms of surface soil moisture and latent heat flux predictions over the 19-day period of METFLUX measurements. It is found that the disaggregation improves the assimilation results, and vice versa, the assimilation of the disaggregated microwave soil moisture improves the spatial distribution of surface soil moisture at the observation time. These results are obtainable regardless of the spatial scale at which solar radiation, air temperature, wind speed, and air humidity are available within the microwave pixel and for an assimilation frequency varying from 1/1 day to 1/5 days.

Corresponding author address: Dr. Oliver Merlin, Centre d’Etudes Spatiales de la Biosphère, 18 avenue Edouard Belin, CEDEX 9, Toulouse 31401, France. Email: merlin@cesbio.cnes.fr

Abstract

Near-surface soil moisture retrieved from Soil Moisture and Ocean Salinity (SMOS)-type data is downscaled and assimilated into a distributed soil–vegetation–atmosphere transfer (SVAT) model with the ensemble Kalman filter. Because satellite-based meteorological data (notably rainfall) are not currently available at finescale, coarse-scale data are used as forcing in both the disaggregation and the assimilation. Synthetic coarse-scale observations are generated from the Monsoon ‘90 data by aggregating the Push Broom Microwave Radiometer (PBMR) pixels covering the eight meteorological and flux (METFLUX) stations and by averaging the meteorological measurements. The performance of the disaggregation/assimilation coupling scheme is then assessed in terms of surface soil moisture and latent heat flux predictions over the 19-day period of METFLUX measurements. It is found that the disaggregation improves the assimilation results, and vice versa, the assimilation of the disaggregated microwave soil moisture improves the spatial distribution of surface soil moisture at the observation time. These results are obtainable regardless of the spatial scale at which solar radiation, air temperature, wind speed, and air humidity are available within the microwave pixel and for an assimilation frequency varying from 1/1 day to 1/5 days.

Corresponding author address: Dr. Oliver Merlin, Centre d’Etudes Spatiales de la Biosphère, 18 avenue Edouard Belin, CEDEX 9, Toulouse 31401, France. Email: merlin@cesbio.cnes.fr

Save
  • Bindlish, R., and Barros A. R. , 2002: Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens., 40 , 326337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunfeldt, D. R., and Ulaby F. T. , 1984: Measured microwave emission and scattering in vegetation canopies. IEEE Trans. Geosci. Remote Sens., 22 , 520524.

    • Search Google Scholar
    • Export Citation
  • Camillo, P. J., and Gurney R. J. , 1986: A resistance parameter for bare soil evaporation models. Soil Sci., 141 , 95105.

  • Chauhan, N. S., Miller S. , and Ardanuy P. , 2003: Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. Int. J. Remote Sens., 24 , 45994622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., and Monteith J. L. , 1988: A four-layer model for the heat budget of homogeneous land surfaces. Quart. J. Roy. Meteor. Soc., 114 , 373398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., 2003: Correcting land surface model predictions for the impact of temporally sparse rainfall rate measurements using an ensemble Kalman filter and surface brightness temperature observations. J. Hydrometeor., 4 , 960973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2002: The value of coarse-scale soil moisture observations for regional surface energy balance modeling. J. Hydrometeor., 3 , 467482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Eagleson P. S. , 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J. Climate, 2 , 816831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1992: Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. J. Geophys. Res., 97 , 1790517924.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Wood E. F. , 1995: Effects of spatial variability and scale on areally averaged evapotranspiration. Water Resour. Res., 31 , 699712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 1999: Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour. Res., 35 , 18391851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faures, J. M., Goodrich D. C. , Woolhiser D. A. , and Sorooshian S. , 1995: Impact of small-scale spatial rainfall variability on runoff simulation. J. Hydrol., 173 , 309326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , Chehbouni A. , Boulet G. , and Duchemin B. , 2006: Analysis of diurnal evaporative fraction behavior. Extended Abstracts, 20th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 1.12.

  • Ghan, S. J., Liljegren J. C. , Shaw W. J. , Hubbe J. H. , and Doran J. C. , 1997: Influence of subgrid variability on surface hydrology. J. Climate, 10 , 31573166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Avissar R. , 1997: Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling. Rev. Geophys., 35 , 413438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, D. C., Schmugge T. J. , Jackson T. J. , Unkrich C. L. , Keefer T. O. , Parry R. , Bach L. B. , and Amer S. A. , 1994: Runoff simulation sensitivity to remotely sensed initial soil water content. Water Resour. Res., 30 , 13931405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, D. C., Lane L. J. , Shillito R. A. , Miller S. N. , Syed K. H. , and Woolhiser D. A. , 1997: Linearity of basin response as a function of scale in a semi-arid watershed. Water Resour. Res., 33 , 29512965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, P. R., Shuttleworth W. J. , Gupta H. V. , Famiglietti J. S. , Syed K. H. , and Goodrich D. C. , 1998: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res., 34 , 34053420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multichannel remotely sensed imagery using neural networks: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. R. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., Vine D. M. L. , Hsu A. Y. , Oldak A. , Starks P. J. , Swift C. T. , Isham J. D. , and Haken M. , 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens., 37 , 21362151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P., 1976: The interpretation of leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273 , 593610.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., Waldteufel P. , Wigneron J-P. , Martinuzzi J-M. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, G., and Barros A. P. , 2002: Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sens. Environ., 83 , 400413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Goodrich D. C. , 1994: Monsoon ‘90 multidisciplinary experiment. Water Resour. Res., 30 , 12111225.

  • Kustas, W. P., and Norman J. M. , 2000: Evaluating the effects of subpixels heterogeneity on pixel average fluxes. Remote Sens. Environ., 74 , 327342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Coauthors, 1991: An interdisciplinary field study of the energy and water fluxes in the atmosphere–biosphere system over semiarid rangelands: Description of some preliminary results. Bull. Amer. Meteor. Soc., 72 , 16831705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., Chehbouni G. , Kerr Y. , Njoku E. G. , and Entekhabi D. , 2005: A combined modeling and multi-spectral/multi-resolution remote sensing approach for disaggregation of surface soil moisture: Application to SMOS configuration. IEEE Trans. Geosci. Remote Sens., 43 , 20362050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, T., Choudhury B. J. , Schmugge T. J. , Wang J. R. , and Jackson T. J. , 1982: A model for microwave emission from vegetation-covered fields. J. Geophys. Res., 87 , 1122911237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J-F. , 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13 , 145159.

  • Pellenq, J., Kalma J. , Boulet G. , Saulnier G-M. , Wooldridge S. , Kerr Y. , and Chehbouni A. , 2003: A disaggregation scheme for soil moisture based on topography and soil depth. J. Hydrol., 276 , 112127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Koster R. D. , 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32 .L02404, doi:10.1029/2004GL021700.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., Vogel G. K. , Rigon R. , Entekhabi D. , Castelli F. , and Rinaldo A. , 1995: On the spatial organization of soil moisture fields. Geophys. Res. Lett., 22 .2757–2760.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T., Jackson T. J. , Kustas W. P. , Roberts R. , Parry R. , Goodrich D. C. , Amer S. A. , and Weltz M. A. , 1994: Push broom microwave radiometer observations of surface soil moisture in Monsoon ‘90. Water Resour. Res., 30 , 13211327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and Wallace J. S. , 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111 , 839855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1986: Microwave Remote Sensing. Active and Passive. Vol. 3. Artech House, 1100 pp.

  • Wood, E. E., 1997: Effects of soil moisture aggregation on surface evaporation fluxes. J. Hydrol., 190 , 397412.

  • Yu, Z., and Coauthors, 1999: Simulation of the hydrologic response to atmospheric forcing in large river basins: Linking a mesoscale meteorological model and a hydrologic model system. J. Hydrol., 218 , 7291.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 112 3
PDF Downloads 97 39 1