• Anders, A. M., 2005: The co-evolution of precipitation and topography. Ph.D. thesis, University of Washington, 248 pp.

  • Barstad, I., and Smith R. B. , 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6 , 8599.

  • Chen, Z. J., and Lamb F. M. , 2002: Theoretical equilibrium moisture content of wood under vacuum. Wood Fiber Sci., 34 , 553559.

  • Colle, A. B., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61 , 588606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., Yang X. , Carter C. M. , and Belcher B. N. , 2003: A modeling system for studying climate controls on mountain glaciers with application to the Patagonian icefields. Climatic Change, 56 , 339367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16 , 436468.

  • Darwin, C., 1962: The Voyage of the Beagle. L. Engel, Ed., Doubleday, 524 pp.

  • Dawson, T. E., 1996: Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: The roles of tree size and hydraulic lift. Tree Physiol., 16 , 263272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehleringer, J. R., Roden J. , and Dawson T. E. , 2000: Assessing ecosystem-level water relations through stable isotope ratio analyses. Methods in Ecosystem Science, O. Sala et al., Eds., Springer Verlag, 181–198.

    • Search Google Scholar
    • Export Citation
  • Friedman, I., 1953: Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta, 4 , 89103.

  • Friedman, I., and O’Neil J. R. , 1977: Compilation of stable isotope fractionation factors of geochemical interest. USGS Professional Paper 440-KK, U.S. Geological Survey, Reston, VA.

    • Crossref
    • Export Citation
  • Friedman, I., Smith G. I. , Gleason J. D. , Warden A. , and Harris J. M. , 1992: Stable isotope composition of waters in southeastern California. Part 1: Modern precipitation. J. Geophys. Res., 97 , 57955812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and Schär C. , 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62 , 28102828.

  • Gao, B-C., and Kaufman Y. J. , 2003: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res., 108 .4389, doi:10.1029/2002JD003023.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, J. A. J., 1975: Atlas Climatico de America Sur. World Meteorological Organization, 28 pp.

  • Holdsworth, G., Fogarasi S. , and Krouse H. R. , 1991: Variation of the stable isotopes of water with altitude in the Saint Elias Mountains of Canada. J. Geophys. Res., 96 , 74837494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulton, N. R. J., Purves R. S. , McCulloch R. D. , Sugden D. E. , and Bentley M. J. , 2002: The Last Glacial Maximum and deglaciation in southern South America. Quat. Sci. Rev., 21 , 233241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., and Smith R. B. , 2003: Cloud time scales and orographic precipitation. J. Atmos. Sci., 60 , 15431559.

  • Kendall, C., and Coplen T. B. , 2001: Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Processes, 15 , 13631393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., Platnick S. , Ping Y. , Arnold G. T. , Gray M. A. , Riedi J. C. , Ackerman S. A. , and Liou K-N. , 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21 , 857875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and Durran D. R. , 2005: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62 , 14631479.

  • Legates, D. R., and McCabe G. J. , 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35 , 233241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A., 1976: The climate of Chile. Climates of Central and South America, Vol. 12, W. Schwerdtfeger, Ed., Elsevier, 113–129.

  • Mo, K. C., and Higgins R. W. , 1996: Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J. Climate, 9 , 15311545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreno, P. I., 2004: Millenial-scale climate variability in northwest Patagonia over the last 15,000 yr. J. Quat. Sci, 19 , 3547.

  • Nakajima, T., and King M. D. , 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patuelo, J. M., and Sala O. E. , 1995: Water losses in the Patagonian Steppe: A modeling approach. Ecology, 76 , 510520.

  • Poage, M. A., and Chamberlain C. P. , 2001: Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. Amer. J. Sci., 301 , 115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowley, D. B., Pierrehumbert R. , and Currie B. S. , 2001: A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett., 188 , 253268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulze, E. D., and Coauthors, 1996: Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108 , 503511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiraiwa, T., Kohshima S. , Uemura R. , Yoshida N. , Matoba S. , Uetake J. , and Godoi M. A. , 2002: High net accumulation rates at Campo de Hielo Patagonica Sur, South America, revealed by analysis of a 45.97m long ice core. Ann. Glaciol., 35 , 8490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61 , 13771391.

  • Smith, R. B., Jiang Q. , Fearon M. , Tabary P. , Dorninger M. , Doyle J. , and Benoit R. , 2003: Orographic precipitation and airmass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129B , 433454.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Barstad I. , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62 , 177191.

  • Stern, L. A., and Blisniuk P. M. , 2002: Stable isotope composition of precipitation across the southern Patagonian Andes. J. Geophys. Res., 107 .4667, doi:10.1029/2002JD002509.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48 , 21592178.

  • Warren, C. R., and Sugden D. E. , 1993: The Patagonian icefields: A glaciological review. Arct. Alp. Res., 25 , 316331.

  • Wilcox, K., 1996: Chile’s Native Forests. NW Wild Books, 148 pp.

  • Williams, D. G., and Ehleringer J. R. , 2000: Intra- and interspecific variation for summer precipitation use in Pinyon-Juniper Woodlands. Ecol. Monogr., 70 , 517537.

    • Search Google Scholar
    • Export Citation
  • Yonge, C. J., Goldenberg L. , and Krouse H. R. , 1989: Isotope study of water bodies along a traverse of southwestern Canada. J. Hydrol., 106 , 245255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005: The impact of lee-side stratification on the spatial distribution of orographic precipitation. Quart. J. Roy. Meteor. Soc., 131 , 10751091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zauker, F., and Broecker W. S. , 1992: The influence of atmospheric moisture transport on the freshwater balance of the Atlantic drainage basin: General circulation and observations. J. Geophys. Res., 97 , 27652773.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 233 15
PDF Downloads 304 171 11

Orographic Precipitation and Water Vapor Fractionation over the Southern Andes

View More View Less
  • 1 Yale University, New Haven, Connecticut
Restricted access

Abstract

The climatological nature of orographic precipitation in the southern Andes between 40° and 48°S is investigated primarily using stable isotope data from streamwater. In addition, four precipitation events are examined using balloon soundings and satellite images. The Moderate Resolution Imaging Spectroradiometer (MODIS) images taken during precipitation events reveal complex patterns of upstream open-cell convection over the ocean, stratus and/or convective clouds over the mountains, and sharp leeside clearing and roll convection over the steppe. Using the water vapor bands on MODIS reveals a sharp drop in column water vapor from about 1.4 to 0.7 cm across the mountain range.

Seventy-one water samples from streams across the southern Andes provide deuterium and oxygen-18 isotope data to determine the drying ratio (DR) of airstreams crossing the mountain range and to constrain free parameters in a mathematical model of orographic precipitation. From the strong isotope fractionation associated with orographic precipitation, it is estimated that DR is ∼50%, the highest value yet found for a mountain range. The cloud delay parameters in a high-resolution linear precipitation model were optimized to fit the streamwater isotope data. The model agrees well with the data when the cloud delay time (i.e., elapsed time from condensation to precipitation) is about 1700 s. The tuned model is used to discuss the small-scale spatial pattern of precipitation.

The isotope data from streams are also compared with data from sapwater. The good agreement suggests that future isotope mapping could be done using trees.

Corresponding author address: Ronald B. Smith, Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109. Email: ronald.smith@yale.edu

Abstract

The climatological nature of orographic precipitation in the southern Andes between 40° and 48°S is investigated primarily using stable isotope data from streamwater. In addition, four precipitation events are examined using balloon soundings and satellite images. The Moderate Resolution Imaging Spectroradiometer (MODIS) images taken during precipitation events reveal complex patterns of upstream open-cell convection over the ocean, stratus and/or convective clouds over the mountains, and sharp leeside clearing and roll convection over the steppe. Using the water vapor bands on MODIS reveals a sharp drop in column water vapor from about 1.4 to 0.7 cm across the mountain range.

Seventy-one water samples from streams across the southern Andes provide deuterium and oxygen-18 isotope data to determine the drying ratio (DR) of airstreams crossing the mountain range and to constrain free parameters in a mathematical model of orographic precipitation. From the strong isotope fractionation associated with orographic precipitation, it is estimated that DR is ∼50%, the highest value yet found for a mountain range. The cloud delay parameters in a high-resolution linear precipitation model were optimized to fit the streamwater isotope data. The model agrees well with the data when the cloud delay time (i.e., elapsed time from condensation to precipitation) is about 1700 s. The tuned model is used to discuss the small-scale spatial pattern of precipitation.

The isotope data from streams are also compared with data from sapwater. The good agreement suggests that future isotope mapping could be done using trees.

Corresponding author address: Ronald B. Smith, Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109. Email: ronald.smith@yale.edu

Supplementary Materials

    • Supplemental Materials (ZIP 14.60 KB)
Save