• Betts, A. K., Viterbo P. , Beljaars A. C. M. , and van den Hurk B. J. J. M. , 2001: Impact of BOREAS on the ECMWF forecast model. J. Geophys. Res., 106 , 3359333604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Schubert S. D. , 2001: Precipitation recycling over the central United States diagnosed from the GEOS-1 Data Assimilation System. J. Hydrometeor., 2 , 2635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., Entekhabi D. , and Eagleson P. S. , 1993: Estimation of continental precipitation recycling. J. Climate, 6 , 10771089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., Dirmeyer P. A. , Sudradjat A. , Levy B. S. , and Bernal F. , 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2 , 537557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Burde, G. I., and Zangvil A. , 2001: The estimation of regional precipitation recycling. Part I: Review of recycling models. J. Climate, 14 , 24972508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burde, G. I., Zangvil A. , and Lamb P. J. , 1996: Estimating the role of local evaporation in precipitation for a two-dimensional region. J. Climate, 9 , 13281338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Brubaker K. L. , 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104 , 1938319397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., and Koster R. D. , 1989: Sources of Sahel precipitation for simulated drought and rainy seasons. J. Climate, 2 , 14381446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and Bras R. L. , 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120 , 861880.

  • Evans, J. P., Smith R. B. , and Oglesby R. J. , 2004: Middle East climate simulation and dominant precipitation processes. Int. J. Climatol., 24 , 16711694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Mearns L. O. , Shields C. , and Mayer L. , 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9 , 11501162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, R. J., and Lloyd C. R. , 1998: Fluxes of water and energy from three high-latitude tundra sites in Svalbard. Nordic Hydrol., 29 , 267284.

  • Henderson-Sellers, A., McGuffie K. , and Zhang H. , 2002: Stable isotopes as validation tools for global climate model predictions of the impact of Amazonian deforestation. J. Climate, 15 , 26642677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kurita, N., Yoshida N. , Inoue G. , and Chayanova E. A. , 2004: Modern isotope climatology of Russia: A first assessment. J. Geophys. Res., 109 .D03102, doi:10.1029/2003JD003404.

    • Search Google Scholar
    • Export Citation
  • Leese, J., Jackson T. , Pitman A. , and Dirmeyer P. , 2001: Meeting summary: GEWEX/BAHC International Workshop on Soil Moisture Monitoring, Analysis, and Prediction for Hydrometeorological and Hydroclimatological Applications. Bull. Amer. Meteor. Soc., 82 , 14231430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettau, H., Lettau K. , and Molion L. C. B. , 1979: Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects. Mon. Wea. Rev., 107 , 227238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCuen, R. H., 2003: Modeling Hydrologic Change: Statistical Methods. CRC Press, 448 pp.

  • Merrill, J. T., Bleck R. , and Boudra D. , 1986: Techniques of Lagrangian trajectory analysis in isentropic coordinates. Mon. Wea. Rev., 114 , 571581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mialon, A., Royer A. , and Fily M. , 2005: Wetland seasonal dynamics and interannual variability over northern high latitudes, derived from microwave satellite data. J. Geophys. Res., 110 .D17102, doi:10.1029/2004JD005697.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104 , 19571972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., Feudale L. , and Turato B. , 2001: Evaporative moisture sources during a sequence of floods in the Mediterranean region. Geophys. Res. Lett., 28 , 20852088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, S. K., and Tishler W. P. , cited. 2005: “Which Old West and Whose?” American History 102: Civil War to the Present, University of Wisconsin. [Available online at http://us.history.wisc.edu/hist102/lectures/lecture03.html.].

  • Serreze, M. C., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46 , 159207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Bromwich D. H. , Clark M. P. , Etringer A. J. , Zhang T. J. , and Lammers R. , 2003: Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res., 108 .8160, doi:10.1029/2001JD000919.

    • Search Google Scholar
    • Export Citation
  • Sudradjat, A., 2002: Source-sink analysis of precipitation supply to large river basins. Ph.D. dissertation, University of Maryland, College Park, 186 pp.

  • Sudradjat, A., Brubaker K. L. , and Dirmeyer P. A. , 2003: Interannual variability of surface evaporative moisture sources of warm-season precipitation in the Mississippi River basin. J. Geophys. Res., 108 .8612, doi:10.1029/2002JD003061.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12 , 13681381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., Slayback D. A. , Pinzon J. E. , Los S. O. , Myneni R. B. , and Taylor M. G. , 2001: Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeor., 45 , 184190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turato, B., Reale O. , and Siccardi F. , 2004: Water vapor sources of the October 2000 Piedmont flood. J. Hydrometeor., 5 , 693712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 564 305 19
PDF Downloads 650 450 13

Characterization of the Global Hydrologic Cycle from a Back-Trajectory Analysis of Atmospheric Water Vapor

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
  • | 2 Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, Maryland
Restricted access

Abstract

Regional precipitation recycling may constitute a feedback mechanism affecting soil moisture memory and the persistence of anomalously dry or wet states. Bulk methods, which estimate recycling based on time-averaged variables, have been applied on a global basis, but these methods may underestimate recycling by neglecting the effects of correlated transients. A back-trajectory method identifies the evaporative sources of vapor contributing to precipitation events by tracing air motion backward in time through the analysis grid of a data-assimilating numerical model. The back-trajectory method has been applied to several large regions; in this paper it is extended to all global land areas for 1979–2003. Meteorological information (wind vectors, humidity, surface pressure, and evaporation) are taken from the NCEP–Department of Energy (DOE) reanalysis, and a hybrid 3-hourly precipitation dataset is produced to establish the termini of the trajectories. The effect of grid size on the recycling fraction is removed using an empirical power-law relationship; this allows comparison among any land areas on a latitude–longitude grid. Recycling ratios are computed on a monthly basis for a 25-yr period. The annual and seasonal averages are consistent with previous estimates in terms of spatial patterns, but the trajectory method generally gives higher estimates of recycling than a bulk method, using compatible spatial scales. High northern latitude regions show the largest amplitude in the annual cycle of recycling, with maxima in late spring/early summer. Amplitudes in arid regions are small in absolute terms, but large relative to their mean values. Regions with strong interannual variability in recycling do not correspond directly to regions with strong intra-annual variability. The average recycling ratio at a spatial scale of 105 km2 for all land areas of the globe is 4.5%; on a global basis, recycling shows a weak positive trend over the 25 yr, driven largely by increases at high northern latitudes.

Corresponding author address: Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: dirmeyer@cola.iges.org

Abstract

Regional precipitation recycling may constitute a feedback mechanism affecting soil moisture memory and the persistence of anomalously dry or wet states. Bulk methods, which estimate recycling based on time-averaged variables, have been applied on a global basis, but these methods may underestimate recycling by neglecting the effects of correlated transients. A back-trajectory method identifies the evaporative sources of vapor contributing to precipitation events by tracing air motion backward in time through the analysis grid of a data-assimilating numerical model. The back-trajectory method has been applied to several large regions; in this paper it is extended to all global land areas for 1979–2003. Meteorological information (wind vectors, humidity, surface pressure, and evaporation) are taken from the NCEP–Department of Energy (DOE) reanalysis, and a hybrid 3-hourly precipitation dataset is produced to establish the termini of the trajectories. The effect of grid size on the recycling fraction is removed using an empirical power-law relationship; this allows comparison among any land areas on a latitude–longitude grid. Recycling ratios are computed on a monthly basis for a 25-yr period. The annual and seasonal averages are consistent with previous estimates in terms of spatial patterns, but the trajectory method generally gives higher estimates of recycling than a bulk method, using compatible spatial scales. High northern latitude regions show the largest amplitude in the annual cycle of recycling, with maxima in late spring/early summer. Amplitudes in arid regions are small in absolute terms, but large relative to their mean values. Regions with strong interannual variability in recycling do not correspond directly to regions with strong intra-annual variability. The average recycling ratio at a spatial scale of 105 km2 for all land areas of the globe is 4.5%; on a global basis, recycling shows a weak positive trend over the 25 yr, driven largely by increases at high northern latitudes.

Corresponding author address: Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: dirmeyer@cola.iges.org

Save